安全帽佩戴识别算法采用SuiJi-AI人工智能深度学习技术+计算机智能视觉识别算法,且通过规模化的安全帽数据识别训练。安全帽佩戴识别算法借助现场已有的监控摄像头对监控画面中人员着装行为进行实时分析识别。假如检测人员不戴安全帽,SuiJiAi将立即记录和警报,并可将纪录数据推送到后台人员,提高安全监督效率。
目前,佩戴安全帽的问题是难以控制。在处理大而繁杂的现场作业自然环境时,人力控制与监管效率不高,控制不健全的问题直接暴露出来。后边提出的一些解决方法没法根除。将SuiJiAi安全帽佩戴识别算法用于安全帽佩戴识别是目前很好的方法。
安全帽佩戴识别算法识别安全帽佩戴步骤:1.现场已有的监控抓拍设备实时上传现场视频流至SuiJiAi算法软件主机。2.SuiJiAi算法软件主机实时读取视频流,通过安全帽识别算法准确识别安全帽佩戴情况。3.SuiJiAi安全帽佩戴识别算法对未佩戴安全帽行为进行抓拍留档,并根据需要在机房或者点位端报警。SuiJiAi安全帽佩戴识别算法也可以对不同颜色的安全帽进行识别分析,常见的安全帽颜色有白色,蓝色,红色,橙色,黄色,通过模型的训练也可以对其他颜色进行识别。
以下代码与正文无关
import os
from torch.utils.data import Dataset
from utils import *
from torchvision import transforms
transform = transforms.Compose([
transforms.ToTensor()
])
class MyDataset(Dataset):
def __init__(self, path):
self.path = path
self.name = os.listdir(os.path.join(path, 'notedata'))
def __len__(self):
return len(self.name)
def __getitem__(self, index):
segment_name = self.name[index] #XX.png
segment_path = os.path.join(self.path, 'notedata', segment_name)