约瑟夫环+考勤刷卡(蓝桥杯JAVA解法)

news2024/11/23 4:51:26

约瑟夫环:用户登录

题目描述

设有 n 个人围坐在圆桌周围,现从某个位置 k 上的人开始报数,报数到 m 的人就站出来。下一个人,即原来的第 m+1 个位置上的人,又从 1 开始报数,再报数到 m 的人站出来。依次重复下去,直到全部的人都站出来为止。试设计一个程序求出这 n 个人的出列顺序。

要求一:采用循环链表解决。

要求二:可以使用模拟法,模拟循环链表。

要求三:可以不使用循环链表类的定义使用方式。

输入描述

输入只有一行且为用空格隔开的三个正整数 n,k,mn,k,m,其含义如上所述。

输出描述

共 nn 行,表示这 nn 个人的出列顺序。

输入输出样例

示例 1

输入

3 5 8

输出

3
2
1

运行限制

  • 最大运行时间:1s
  • 最大运行内存: 128M

代码:

import java.util.Scanner;
// 1:无需package
// 2: 类名必须Main, 不可修改
import java.util.Queue;
import java.util.LinkedList;

public class 约瑟夫环 {
    public static void main(String[] args) {
        Scanner scan = new Scanner(System.in);
        //在此输入您的代码...
        int n = scan.nextInt();
        int k = scan.nextInt();
        int m = scan.nextInt();
        int count=0;

        Queue<Integer> queue = new LinkedList<>();
        for(int i=1; i<=n; i++)  queue.offer(i);//存入数据
        for(int i=1; i<k; i++)  queue.offer(queue.poll());//找到k
        //开始找,如若找到从队列移除,如若没有找到,则将队首的元素移到队尾
        while(!queue.isEmpty()){
            count++;
            Integer value = queue.poll();
            if(count!=m){
                queue.offer(value);
            }
            else{
                count=0;
                System.out.println(value);
            }
        }
        scan.close();
    }
}

考勤刷卡:用户登录

问题描述

小蓝负责一个公司的考勤系统, 他每天都需要根据员工刷卡的情况来确定 每个员工是否到岗。

当员工刷卡时, 会在后台留下一条记录, 包括刷卡的时间和员工编号, 只 要在一天中员工刷过一次卡, 就认为他到岗了。

现在小蓝导出了一天中所有员工的刷卡记录, 请将所有到岗员工的员工编 号列出。

输入格式

输入的第一行包含一个正整数 n, 表示一天中所有员工的刷卡记录的条数。 接下来 n 行, 每行包含一条刷卡记录, 每条刷卡记录的格式为:

HH:MM:SS ID

其中 HH:MM: SS 表示刷卡时间, HH 为一个 0 到 23 之间的两位十进制整数 (可能含前导 0 ) 表示时, MM 为一个 0 到 59 之间的两位十进制整数 (可能含前 导 0) 表示分, SS 为一个 0 到 59 之间的两位十进制整数 (可能含前导 0 ) 表 示秒, ID 为一个不含前导 0 的整数表示员工的编号。

所有记录按照刷卡时间升序排列, 可能同一时刻有多人刷卡。

输出格式

输出若干行, 每行包含一个整数, 按照从小到大的顺序输出, 表示到岗员 工的编号。

样例输入


4

13:05:42 103

14:07:12 4567

15:03:00 103

17:00:21 1

样例输出


1



103



4567

 代码:

import java.util.*;
// 1:无需package
// 2: 类名必须Main, 不可修改

public class Main {
    public static void main(String[] args) {
        Scanner scan = new Scanner(System.in);
        //在此输入您的代码...
        ArrayList<String>str = new ArrayList<>();
        TreeSet<Integer>id = new TreeSet<>();//可以按照有序加入到id中
        int n = scan.nextInt();
        for(int i=0;i<n;i++){
          str.add(scan.next());
          id.add(scan.nextInt());
        }
        //依次输出加入到id中的内容
      for(Integer a : id){
           System.out.println(a);
       } 
        scan.close();
    }
}

早知如此绊人心,何如当初莫相识

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/467852.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

上传ipa到appstore详细步骤

使用hbuilderx或apicloud云打包后&#xff0c;会生成一个ipa文件&#xff0c;而iphone是无法直接安装这个ipa文件的&#xff0c;需要将这个ipa文件上架&#xff0c;才能安装使用。那么如何上架呢&#xff1f; hbuilderx和apicloud并没有上架的教程&#xff0c;而苹果官方是推荐…

基于Jenkins,docker实现自动化部署(持续交互)【转】

前言 随着业务的增长&#xff0c;需求也开始增多&#xff0c;每个需求的大小&#xff0c;开发周期&#xff0c;发布时间都不一致。基于微服务的系统架构&#xff0c;功能的叠加&#xff0c;对应的服务的数量也在增加&#xff0c;大小功能的快速迭代&#xff0c;更加要求部署的…

在 Apple 设备(包括 iPad、iOS 和 MacBook)上为用户提供完整的 SAP GUI

苹果应用功能 高效且直观的用户界面。 访问 VA01、MI31、MI04、IW21 等。– 无编程 自动化和简化您的 SAP 流程&#xff0c;如库存盘点 在 Apple 设备&#xff08;包括 iPad、iOS 和 MacBook&#xff09;上为用户提供完整的 SAP GUI&#xff0c;利用他们已经了解的 UI 丰富性并…

持续集成——web自动化测试集成实战

文章目录 一、Web自动化测试持续集成的好处二、环境准备三、Jenkins节点挂载四、节点环境的配置1、JDK2、Chrome 浏览器3、chromedriver4、Python3环境5、allure-commandline工具6、allure插件 五、本地运行待测代码(保证代码没有问题)六、库文件的导出七、Jenkins上运行代码配…

高功率激光切割中不良现象的排除技巧

高功率切割市场现状 随着激光行业的发展和下游产业需求的变化&#xff0c;高功率的激光切割设备已逐渐成为市场关注的热点。高功率激光切割凭着速度和厚度上无可比拟的优势&#xff0c;目前已获得了市场的广泛认可。 但由于高功率激光切割技术尚处于普及的初级阶段&#xff0c;…

栈溢出的原理

目录 缓冲区 我们先以解决这个题目为准 然后通过这个题目去做透 gdb 代码段 栈中 当前时刻寄存器存储的内容 1 寻找漏洞函数 输入 输出 字符串 2 确定填充长度 覆盖函数返回地址 覆盖栈上变量的内容 覆盖bss段 栈溢出是在堆栈中 对某一个变量无限制的输入 超出了…

【三十天精通Vue 3】第十九天 Vue 3的渐进式Web应用程序详解

✅创作者&#xff1a;陈书予 &#x1f389;个人主页&#xff1a;陈书予的个人主页 &#x1f341;陈书予的个人社区&#xff0c;欢迎你的加入: 陈书予的社区 &#x1f31f;专栏地址: 三十天精通 Vue 3 文章目录 引言一、什么是渐进式 Web 应用程序1.1 渐进式 Web 应用程序的定义…

市场预测美联储加息的有效性几何

美联储加息已狂飙一年&#xff0c;很多相关预测美联储加息降息的文章都会提到“一年内加息多少次的概率是多少多少”这种表述&#xff0c;那么这个数据是怎样计算的&#xff1f;本期笔者将简单讨论美国联邦利率的运作机制&#xff0c;介绍用于预测联储加/降息概率的方式&#x…

vue批量生成二维码,打印生成的二维码,并批量下载生成的二维码,qrcode

通过使用 qrcode 生成二维码&#xff0c; 使用 jszip 打包批量二维码文件&#xff0c; 使用 file-saver 下载打包好的zip文件&#xff0c; 使用 vue-print-nb 打印生成的二维码 生成二维码&#xff1a; 打印二维码 下载二维码 1. 批量生成二维码—安装依赖 ![请添加图片描述]…

CH32F203RCT6 pin2pin兼容STM32F103RCT6

32位大容量通用型Cortex-M3单片机 CH32F203是基于Cortex-M3内核设计的工业级大容量通用微控制器&#xff0c;此系列主频高达144MHz&#xff0c;独立了GPIO电压&#xff08;与系统供电分离&#xff09;。资源同比增加了随机数单元&#xff0c;4组运放比较器&#xff1b;提高串口…

硅烷PEG马来酰亚胺,Silane-PEG-Mal,马来酰亚胺聚乙二醇硅烷

中文名称&#xff1a;马来酰亚胺聚乙二醇硅烷 英文名称&#xff1a;Silane-PEG-Maleimide&#xff0c;Silane-PEG-MAL 性状&#xff1a;液体或者固体&#xff0c;取决于分子量 溶剂&#xff1a;溶于水、DMSO、DMF、DCM等常规性有机溶剂 活性基团&#xff1a;MAL 分子量&am…

【spring事务】源码分析

项目启动时&#xff0c;创建代理过程 initializeBean.applyBeanPostProcessorsAfterInitialization 由AnnotationAwareAspectJAutoProxyCreator来处理 AnnotationAwareAspectJAutoProxyCreator wrapIfNecessary 通过getAdvicesAndAdvisorsForBean获取bean满足的Advisor&…

DHCP 服务器监控

网络中使用了数千个 IP 地址&#xff0c;当今大多数组织中的 IP 地址都由 DHCP 服务器提供服务。必须发现可用的 IP 地址、了解如何预配 IP 并了解 IP 池利用率。使用 DHCP 服务器进行 IP 预配可以更轻松地获得这些重要见解&#xff0c;并根据组织的不同需求分配不同的范围。这…

SYSU程设c++(第十周)继承与派生、继承的访问控制、继承的构造函数与析构函数

继承与派生 使用背景&#xff1a; 当定义一个新的类 B 时&#xff0c;如果发现类 B 拥有某个已写好的类 A 的全部特性&#xff0c;此外还有类 A 没有的特性&#xff0c;那么就不必从头重写类 B&#xff0c;而是把类 A 作为一个“基类”&#xff08;也称“父类”&#xff09;&a…

【正则表达式上】——03全栈开发——如桃花来

目录索引 介绍&#xff1a;常见匹配模式&#xff1a; re.match()方法&#xff1a;常规匹配&#xff1a;泛匹配&#xff1a; 匹配目标-匹配分组&#xff1a;贪婪匹配&#xff1a;非贪婪匹配&#xff1a; 介绍&#xff1a; 正则表达式是对字符串操作的一种逻辑公式&#xff0c;就…

Unsupervised Point Cloud Pre-training via Occlusion Completion

题目&#xff1a;Unsupervised Point Cloud Pre-training via Occlusion Completion 摘要 方法&#xff1a; 提出一种用于点云的预训练方法Occlusion Completion (OcCo) 技术细节&#xff1a; mask相机视角里被遮挡的点学习一个encoder-decoder模型&#xff0c;用于重建被遮…

如何批量修改删除html文件中的标签属性

最近工作中遇到一个问题&#xff0c;一份html文档因为内容里面的样式标签过多导致文件整体过大。 这些描述标签不是必须的&#xff0c;现在需要优化删除掉这些标签从而减小文件体积。 对于这种批量修改删除的任务&#xff0c;我们首先想到的就是使用编辑器处理。 编辑html文…

Linux网络——Shell编程规范与变量

Linux网络——Shell编程规范与变量 一、Shell脚本概述1.Shel脚本的概念2.Shell脚本应用场景3.Shell的作用 二、编写第一个Shell脚本1.Shell脚本的构成2.运行 Shell 脚本 三、重定向与管道操作1.交互式硬件设备2.重定向操作3.管道操作符号 " | " 四、Shell变量的作用、…

滤筒除尘器

滤筒除尘器以滤筒作为过滤元件所组成或采用脉冲喷吹的除尘器。 滤筒除尘器按安装方式分&#xff0c;可以分为斜插式 侧装式&#xff0c;吊装式&#xff0c;上装式。 滤筒除尘器按滤筒材料分&#xff0c;可以分为长纤维聚酯滤筒除尘器&#xff0c;复合纤维滤筒除尘器&#xff0c…

Whistle安装与使用

1、安装npm 网上搜索安装教程&#xff0c;但是使用npm安装软件的时候一直报错 修复方案&#xff0c;将http改成https 2、安装whistle : npm install whistle -g 以及配置见下面两篇文章 爬虫工具—whistle安装与使用 - 简书 whistle安装以及使用_奔跑的蜗牛_爱阳光的博客-C…