实战项目:手把手带你实现一个高并发内存池

news2025/1/10 3:09:36

项目介绍

1.这个项目做的是什么?

当前项目是实现一个高并发的内存池,他的原型是google的一个开源项目tcmalloc,tcmalloc全称Thread-Caching Malloc,即线程缓存的malloc,实现了高效的多线程内存管理,用于替代系统的内存分配相关的函数(malloc、free)。

2.项目目标

模拟实现出一个自己的高并发内存池,在多线程环境下缓解了锁竞争问题,相比于malloc/free效率提高了25%左右,将内存碎片保持在10%左右。

内存池介绍

池化技术

所谓“池化技术”,就是程序先向系统申请过量的资源,然后自己管理,以备不时之需。之所以要申请过量的资源,是因为每次申请该资源都有较大的开销,不如提前申请好了,这样使用时就会变得非常快捷,大大提高程序运行效率。

在计算机中,有很多使用“池”这种技术的地方,除了内存池,还有连接池、线程池、对象池等。以服务器上的线程池为例,它的主要思想是:先启动若干数量的线程,让它们处于睡眠状态,当接收到客户端的请求时,唤醒池中某个睡眠的线程,让它来处理客户端的请求,当处理完这个请求,线程又进入睡眠状态。

内存池

内存池是指程序预先从操作系统申请一块足够大内存,此后,当程序中需要申请内存的时候,不是直接向操作系统申请,而是直接从内存池中获取;同理,当程序释放内存的时候,并不真正将内存返回给操作系统,而是返回内存池。当程序退出(或者特定时间)时,内存池才将之前申请的内存真正释放。

内存池主要解决的问题

内存池主要解决的当然是效率的问题,其次如果作为系统的内存分配器的角度,还需要解决一下内存碎片的问题。那么什么是内存碎片呢?

 

定长内存池

作为程序员(C/C++)我们知道申请内存使用的是malloc,malloc其实就是一个通用的大众货,什么场景下都可以用,但是什么场景下都可以用就意味着什么场景下都不会有很高的性能,下面我们就先来设计一个定长内存池做个开胃菜,当然这个定长内存池在我们后面的高并发内存池中也是有价值的,所以学习他目的有两层,先熟悉一下简单内存池是如何控制的,第二他会作为我们后面内存池的一个基础组件。

 定长内存池之所以高效:是因为它可以切除固定大小的内存,供线程使用。还可以回收,线程释放的内存链接在自由链表中,供下一次线程申请内存使用。

 代码展示

#pragma once
#include <iostream>
#include <vector>
#include <time.h>
#include <windows.h>
using std::cout;
using std::endl;
// 直接去堆上按页申请空间
inline static void* SystemAlloc(size_t kpage)
{
void* ptr = VirtualAlloc(0, kpage << 13, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
if (ptr == nullptr)
throw std::bad_alloc();
return ptr;
}
template<class T>
class ObjectPool
{
public:
T* New()
{
T* obj = nullptr;
// 优先把还回来内存块对象,再次重复利用
if (_freeList)
{
//头删
void* next = *((void**)_freeList);
//将链表的第一个空间给obj使用,freeList存的就是第一个小内存的地址
obj = (T*)_freeList;
_freeList = next;
}
else
{
// 剩余内存不够一个对象大小时,则重新开大块空间
if (_remainBytes < sizeof(T))
{
_remainBytes = 128 * 1024; //16页
//_memory = (char*)malloc(_remainBytes);
//SystemAlloc(x)直接向系统申请内存,x表示申请的页数
_memory = (char*)SystemAlloc(_remainBytes >> 13); //申请16页
if (_memory == nullptr)
{
throw std::bad_alloc();
}
}
obj = (T*)_memory;
//一个对象的大小 ,小于指针大小,就给一个指针大小
size_t objSize = sizeof(T) < sizeof(void*) ?
sizeof(void*) : sizeof(T);
_memory += objSize; //指针往后走一个小块空间
_remainBytes -= objSize; //每用一小块空间,剩余空间更新
}
// 定位new,显示调用T的构造函数初始化
new(obj)T;
return obj;
}
void Delete(T* obj)
{
// 显示调用析构函数清理对象
obj->~T();
// 头插,将不用的小块空间,插入自由链表中
*(void**)obj = _freeList; //*(void**) 解引用拿到 void*,在32/64位下大小为 4/8
_freeList = obj;
}
private:
char* _memory = nullptr; // 指向大块内存的指针(向系统申请的大块内存)
size_t _remainBytes = 0; // 大块内存在切分过程中剩余字节数
void* _freeList = nullptr; // 还回来过程中链接的自由链表的头指针
};
struct TreeNode
{
int _val;
TreeNode* _left;
TreeNode* _right;
TreeNode()
:_val(0)
, _left(nullptr)
, _right(nullptr)
{}
};
void TestObjectPool()
{
// 申请释放的轮次
const size_t Rounds = 5;
// 每轮申请释放多少次
const size_t N = 100000;
std::vector<TreeNode*> v1;
v1.reserve(N);
size_t begin1 = clock();
for (size_t j = 0; j < Rounds; ++j)
{
for (int i = 0; i < N; ++i)
{
v1.push_back(new TreeNode);
}
for (int i = 0; i < N; ++i)
{
delete v1[i];
}
v1.clear();
}
size_t end1 = clock();
std::vector<TreeNode*> v2;
v2.reserve(N);
ObjectPool<TreeNode> TNPool;
size_t begin2 = clock();
for (size_t j = 0; j < Rounds; ++j)
{
for (int i = 0; i < N; ++i)
{
v2.push_back(TNPool.New());
}
for (int i = 0; i < N; ++i)
{
TNPool.Delete(v2[i]);
}
v2.clear();
}
size_t end2 = clock();
cout << "new cost time:" << end1 - begin1 << endl;
cout << "object pool cost time:" << end2 - begin2 << endl;
}
int main()
{
TestObjectPool();
return 0;
}

效果演示

 可以看出,使用定长内存池,率率比使用malloc申请空间要高的多。

相关视频推荐

200行代码实现slab,开启内存池的内存管理(准备linux环境)

90分钟了解Linux内存架构,numa的优势,slab的实现,vmalloc原理

5种内存泄漏检测方式,让你重新理解C++内存管理

免费学习地址:C/C++Linux服务器开发/后台架构师

需要C/C++ Linux服务器架构师学习资料加qun579733396获取(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享

 

高并发内存池整体框架设计

现代很多的开发环境都是多核多线程,在申请内存的场景下,必然存在激烈的锁竞争问题。malloc本身其实已经很优秀,那么我们项目的原型tcmalloc就是在多线程高并发的场景下更胜一筹,所以这次我们实现的内存池需要考虑以下几方面的问题。

1. 性能问题。

2. 多线程环境下,锁竞争问题。

3. 内存碎片问题。

thread cache:线程缓存是每个线程独有的,用于小于256KB的内存的分配,线程从这里申请内存不需要加锁,每个线程独享一个cache,这也就是这个并发线程池高效的地方。

central cache:中心缓存是所有线程所共享,thread cache是按需从central cache中获取的对象。central cache合适的时机回收thread cache中的对象,避免一个线程占用了太多的内存,而其他线程的内存吃紧,达到内存分配在多个线程中更均衡的按需调度的目的。central cache是存在竞争的,所以从这里取内存对象是需要加锁,首先这里用的是桶锁,其次只有thread cache的没有内存对象时才会找central cache,所以这里竞争不会很激烈。

page cache:页缓存是在central cache缓存上面的一层缓存,存储的内存是以页为单位存储及分配的,central cache没有内存对象时,从page cache分配出一定数量的page,并切割成定长大小的小块内存,分配给central cache。当一个span的几个跨度页的对象都回收以后,page cache会回收central cache满足条件的span对象,并且合并相邻的页,组成更大的页,缓解内存碎片的问题。

 

高并发内存池–thread cache

thread cache是哈希桶结构,每个桶是一个按桶位置映射大小的内存块对象的自由链表。每个线程都会有一个thread cache对象,这样每个线程在这里获取对象和释放对象时是无锁的。

 申请内存:

  1. 当内存申请size<=256KB,先获取到线程本地存储的thread cache对象,计算size映射的哈希桶自由链表下标i。
  2. 如果自由链表_freeLists[i]中有对象,则直接Pop一个内存对象返回。
  3. 如果_freeLists[i]中没有对象时,则批量从central cache中获取一定数量的对象,插入到自由链表并返回一个对象。

释放内存:

4. 当释放内存小于256k时将内存释放回thread cache,计算size映射自由链表桶位置i,将对象Push到_freeLists[i]。

5. 当链表的长度过长,则回收一部分内存对象到central cache。

如何保证线程可以创建属于自己的thread cache?

线程局部存储(TLS),是一种变量的存储方法,这个变量在它所在的线程内是全局可访问的,但是不能被其他线程访问到,这样就保持了数据的线程独立性。而熟知的全局变量,是所有线程都可以访问的,这样就不可避免需要锁来控制,增加了控制成本和代码复杂度。

thread cache代码框架:

#pragma once
#include "Common.h"
class ThreadCache
{
public:
// 申请和释放内存对象
void* Allocate(size_t size);
void Deallocate(void* ptr, size_t size);
// 从中心缓存获取对象
void* FetchFromCentralCache(size_t index, size_t size);
// 释放对象时,链表过长时,回收内存回到中心缓存
void ListTooLong(FreeList& list, size_t size);
private:
FreeList _freeLists[NFREELIST];
};
// TLS thread local storage(线程本地存储,每个线程都有自己的线程本地存储)
//有了TLS,线程来访问就不需要加锁了,被static修饰,只在当前文件可见
static _declspec(thread) ThreadCache* pTLSThreadCache = nullptr;
// 管理切分好的小对象的自由链表
class FreeList
{
public:
void Push(void* obj)
{
assert(obj);
// 头插
//*(void**)obj = _freeList; //*(void**)obj取obj头上4个或8个字节指向_freeList
NextObj(obj) = _freeList;
_freeList = obj;
++_size;
}
void PushRange(void* start, void* end, size_t n)
{
NextObj(end) = _freeList;
_freeList = start;
// 测试验证+条件断点
/*int i = 0;
void* cur = start;
while (cur)
{
cur = NextObj(cur);
++i;
}
if (n != i)
{
int x = 0;
}*/
_size += n;
}
void PopRange(void*& start, void*& end, size_t n)
{
assert(n >= _size);
start = _freeList;
end = start;
for (size_t i = 0; i < n - 1; ++i)
{
end = NextObj(end);
}
_freeList = NextObj(end);
NextObj(end) = nullptr;
_size -= n;
}
void* Pop()
{
assert(_freeList);
// 头删
void* obj = _freeList;
_freeList = NextObj(obj);
--_size;
return obj;
}
bool Empty()
{
return _freeList == nullptr;
}
size_t& MaxSize()
{
return _maxSize;
}
size_t Size()
{
return _size;
}
private:
void* _freeList = nullptr;
size_t _maxSize = 1;
size_t _size = 0;
};

自由链表的哈希桶跟对象大小的映射关系

// 计算对象大小的对齐映射规则
class SizeClass
{
public:
// 整体控制在最多10%左右的内碎片浪费
// [1,128] 8byte对齐 freelist[0,16)
//假设需要129字节,会分配给你144字节给你,就有15字节的浪费 15/144=0.104
// [128+1,1024] 16byte对齐 freelist[16,72)
//假设需要1025个字节,会分配给你1152字节给你,就有127字节的浪费 127/1152=0.11
// [1024+1,8*1024] 128byte对齐 freelist[72,128)
// [8*1024+1,64*1024] 1024byte对齐 freelist[128,184)
// [64*1024+1,256*1024] 8*1024byte对齐 freelist[184,208)
/*size_t _RoundUp(size_t size, size_t alignNum)
{
size_t alignSize;
if (size % alignNum != 0)
{
alignSize = (size / alignNum + 1)*alignNum;
}
else
{
alignSize = size;
}
return alignSize;
}*/
// 1-8
static inline size_t _RoundUp(size_t bytes, size_t alignNum)
{
return ((bytes + alignNum - 1) & ~(alignNum - 1));
}
static inline size_t RoundUp(size_t size)
{
if (size <= 128)
{
return _RoundUp(size, 8);
}
else if (size <= 1024)
{
return _RoundUp(size, 16);
}
else if (size <= 8*1024)
{
return _RoundUp(size, 128);
}
else if (size <= 64*1024)
{
return _RoundUp(size, 1024);
}
else if (size <= 256 * 1024)
{
return _RoundUp(size, 8*1024);
}
else //>256KB
{
return _RoundUp(size, 1<<PAGE_SHIFT);
}
}
static inline size_t _Index(size_t bytes, size_t align_shift)
{
return ((bytes + (1 << align_shift) - 1) >> align_shift) - 1;
}
// 计算映射的哪一个自由链表桶
static inline size_t Index(size_t bytes)
{
assert(bytes <= MAX_BYTES);
// 每个区间有多少个链
static int group_array[4] = { 16, 56, 56, 56 };
if (bytes <= 128){
return _Index(bytes, 3);
}
else if (bytes <= 1024){
return _Index(bytes - 128, 4) + group_array[0];
}
else if (bytes <= 8 * 1024){
return _Index(bytes - 1024, 7) + group_array[1] + group_array[0];
}
else if (bytes <= 64 * 1024){
return _Index(bytes - 8 * 1024, 10) + group_array[2] + group_array[1] + group_array[0];
}
else if (bytes <= 256 * 1024){
return _Index(bytes - 64 * 1024, 13) + group_array[3] + group_array[2] + group_array[1] + group_array[0];
}
else{
assert(false);
}
return -1;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/461207.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java——字符串的排列

题目链接 牛客网在线oj题——字符串的排列 题目描述 输入一个长度为 n 字符串&#xff0c;打印出该字符串中字符的所有排列&#xff0c;你可以以任意顺序返回这个字符串数组。 例如输入字符串ABC,则输出由字符A,B,C所能排列出来的所有字符串ABC,ACB,BAC,BCA,CBA和CAB。 数…

【SpringMVC】| SpringMVC 入门

目录 一&#xff1a;SpringMVC 入门 1. SpringMVC简介 2. SpringMVC的优点 3. SpringMVC的优化 4. SpringMVC执行的流程 5. 基于注解的SpringMVC程序 图书推荐 一&#xff1a;《Spring Boot进阶&#xff1a;原理、实战与面试题分析》 二&#xff1a;《深入理解Java虚拟…

19.网络爬虫—照片管道

网络爬虫—照片管道 Scrapy基础Scrapy运行流程原理Scrapy的工作流程 scrapy照片管道实战演示设置图片路径配置爬虫解析数据运行爬虫查看文件 后记 前言&#xff1a; &#x1f3d8;️&#x1f3d8;️个人简介&#xff1a;以山河作礼。 &#x1f396;️&#x1f396;️:Python领域…

C++ Primer笔记——排列算法(next_permutation、prev_permutation、is_permutation)

目录 概述 ①next_permutation ②prev_permutation ③is_permutation 概述 页数&#xff1a;P778 &#xff08;A.2.7 排列算法&#xff09; 头文件&#xff1a;<algorithm> 函数名&#xff1a;next_permutation & prev_permutation & is_permutation C为…

信息安全复习七:报文鉴别与哈希函数

一、章节梗概 1.安全服务与安全需求 2.报文鉴别的安全需求 3.对报文加密来实现报文鉴别 4.报文鉴别码 5.哈希函数 6.生日攻击 二、安全服务与安全需求 2.1 引入 通信保密可以概况所有的安全需求吗? 不能&#xff0c;信息安全需求有很多种&#xff0c;通信保密只是一种安全…

2023移动云大会 | “六大”服务承诺 全力做优“心级服务”

4月25日&#xff0c;以“云擎未来 智信天下”为主题的2023移动云大会在苏州金鸡湖国际会议中心举办&#xff0c;众多政府领导、院士专家、知名企业客户与合作伙伴高层等数千名嘉宾齐聚一堂。 大会期间&#xff0c;移动云深入践行“为国建云”的使命&#xff0c;推出“六大”服…

vdo磁盘管理

在 storagesrv 上新加一块 10G 磁盘;  创建 vdo 磁盘,并开启 vdo 磁盘的重删和压缩;  名字为 vdodisk,大小为 150G,文件系统为 ext4;  并设置开机自动挂载。挂载到/vdodata。 1.lsblk 查看自己添加的硬盘名称 2.安装vdo软件包 yum -y install vdo…

卡尔曼滤波原理及代码

目录 一.简介 二.原理 1.先验估计原理 2.后验估计原理 3.总结 三.示例 一.简介 卡尔曼滤波&#xff08;Kalman filtering&#xff09;是一种利用线性系统状态方程&#xff0c;通过系统输入输出观测数据&#xff0c;对系统状态进行最优估计的算法&#xff0c;它可以在任意…

Vue-全局过滤器以及进阶操作

前言 上篇文件讲述了&#xff0c;Vue全局过滤器的基本使用&#xff1a;Vue过滤器的基本使用 本篇将延续上文&#xff0c;讲述vue中过滤器的进阶操作 过滤器传参 如果有一天&#xff0c;多个地方使用过滤器&#xff0c;而且需要传递参数&#xff0c;那么可以这么写 多个过滤…

《Netty》从零开始学netty源码(四十三)之PoolChunk.allocate

allocate PoolChunk分配内存空间时可调用allocate方法来分配&#xff0c;具体的源码过程如下&#xff1a; 从代码中可以看出会根据分配的内存大小决定分配的是subpage还是normal的page&#xff0c;接下来具体分析以下方法&#xff1a; allocateSubpageallocateRuninitBuf …

Unity|| 如何把生存类游戏设计得更优秀

你是否曾经玩过这样的生存类游戏&#xff1a; 1、通过最初阶段后&#xff0c;你觉得游戏变得越来越简单 2、游戏的重点从生存转移到了基地建设或其他方面 诸如此类&#xff0c;很大程度上是由于糟糕的难度曲线所致。包括很多&#xff08;非常受欢迎的&#xff09;生存游戏都…

Redis——缓存更新策略

业务场景&#xff1a; 低一致性需求&#xff1a;使用内存淘汰机制。例如店铺类型的查询缓存&#xff0c;很少修改 高一致性需求&#xff1a;主动更新&#xff0c;并以超时剔除作为兜底方案。例如店铺详情查询的缓存&#xff0c;经常修改 主动更新策略 实际开发中最常用的还是…

51单片机(三)独立按键控制LED

❤️ 专栏简介&#xff1a;本专栏记录了从零学习单片机的过程&#xff0c;其中包括51单片机和STM32单片机两部分&#xff1b;建议先学习51单片机&#xff0c;其是STM32等高级单片机的基础&#xff1b;这样再学习STM32时才能融会贯通。 ☀️ 专栏适用人群 &#xff1a;适用于想要…

【SpringMVC源码三千问】DispatcherServlet源码解析

DispatcherServlet#doDispatch() 是 SpringMVC 处理请求分发的方法&#xff0c;只要是 spring mvc 处理的 http 请求&#xff0c;都会经过 DispatcherServlet 的请求分发处理&#xff0c;从而调用相应的 handler method。 DispatcherServlet#doDispatch() 源码分析&#xff1a…

PCL点云库(3) — common模块

目录 3.1 common模块中的头文件 3.2 common模块中的基本函数 &#xff08;1&#xff09;angle角度转换 &#xff08;2&#xff09;distance距离计算 &#xff08;3&#xff09;random随机数生成 &#xff08;4&#xff09;sping扩展模块 &#xff08;5&#xff09;time获…

请问你见过吐代码的泡泡吗(冒泡排序)

&#x1f929;本文作者&#xff1a;大家好&#xff0c;我是paperjie&#xff0c;感谢你阅读本文&#xff0c;欢迎一建三连哦。 &#x1f970;内容专栏&#xff1a;这里是《算法详解》&#xff0c;笔者用重金(时间和精力)打造&#xff0c;将算法知识一网打尽&#xff0c;希望可以…

现场工程师救火-UEFI(BIOS)节能设置导致金牌服务器只跑出龟速

近期协助出现场&#xff0c;解决了一个非常典型的UEFI 启动参数配置不当导致的服务器降效案例。错误的节能参数配置&#xff0c;导致价值几十万的服务器变成龟速服务器&#xff0c;并造成严重的生产事故。 1. 现象 朋友公司近期准备升级2010年就部署的服务器组&#xff0c;新…

vue移动端项目通用技巧

目录 一、配置文件 1.1、取消eslint校验 1.2、基础文件引入 1.3、iconfont引入svg使用 1.4、css的简化应用 1.5、内容溢出用省略号替代 1.6、非组件库的底部导航跳转 1.7、基础版轮播图 一、配置文件 1.1、取消eslint校验 在vue.config.js文件里&#xff1a; const …

【论文阅读】Robustness in Reinforcement Learning

原文为 Trustworthy Reinforcement Learning Against Intrinsic Vulnerabilities: Robustness, Safety, and Generalizability&#xff0c;是 2022 年 CMU 发表的综述文章。 本文主要关注文章的第二部分即鲁棒性 1. 概述 鲁棒性主要解决的问题是提高策略在面对不确定性或者对抗…

Linux:文件查看:《cat》《more》《less》《head》《tail》《wc》《grep》使用方法

同样是查看为什么要有这么多查看方法&#xff1f;&#xff1f;&#xff1f; 因为他们的用法和扩功能肯定不一样&#xff0c;选择与你需要匹配的一条命令可以节省时间的同时更快速 cat 文件 可以直接查看文件内的内容 直接可以查看文件内的内容 要直接看更多的文件以空格隔开的…