【线程同步】

news2024/11/25 16:40:25

一个大佬的笔记,比较详细

一、线程概述

1.线程概述

  • 与进程(process)类似,线程(thread)是允许应用程序并发执行多个任务的一种机
    制。一个进程可以包含多个线程。同一个程序中的所有线程均会独立执行相同程序,且共
    享同一份全局内存区域,其中包括初始化数据段、未初始化数据段,以及堆内存段。(传
    统意义上的 UNIX 进程只是多线程程序的一个特例,该进程只包含一个线程)
  • 进程是 CPU 分配资源的最小单位,线程是操作系统调度执行的最小单位。
  • 线程是轻量级的进程(LWP:Light Weight Process),在 Linux 环境下线程的本
    质仍是进程。
  • 查看指定进程的 LWP 号:ps –Lf pid

2.线程和进程区别

  • 进程间的信息难以共享。由于除去只读代码段外,父子进程并未共享内存,因此必须采用
    一些进程间通信方式,在进程间进行信息交换。
  • 调用 fork() 来创建进程的代价相对较高,即便利用写时复制技术,仍然需要复制诸如
    内存页表和文件描述符表之类的多种进程属性,这意味着 fork() 调用在时间上的开销
    依然不菲。
  • 线程之间能够方便、快速地共享信息。只需将数据复制到共享(全局或堆)变量中即可。
  • 创建线程比创建进程通常要快 10 倍甚至更多。线程间是共享虚拟地址空间的,无需采
    用写时复制来复制内存,也无需复制页表。

3.线程和进程虚拟地址空间

线程的堆空间是共享的,栈空间不是共享的(每个线程都会划分一个独立的栈空间)
在这里插入图片描述

4.线程之间共享和非共享资源

  • 共享资源
    • 进程 ID 和父进程 ID
    • 进程组 ID 和会话 ID
    • 用户 ID 和 用户组 ID
    • 文件描述符表
    • 信号处置
    • 文件系统的相关信息:文件权限掩码(umask)、当前工作目录
    • 虚拟地址空间(除栈、.text)
  • 非共享资源
    • 线程 ID
    • 信号掩码
    • 线程特有数据
    • error 变量
    • 实时调度策略和优先级
    • 栈,本地变量和函数的调用链接信息

5.NPTL

  • 当 Linux 最初开发时,在内核中并不能真正支持线程。但是它的确可以通过 clone()
    系统调用将进程作为可调度的实体。这个调用创建了调用进程(calling process)的
    一个拷贝,这个拷贝与调用进程共享相同的地址空间。LinuxThreads 项目使用这个调用
    来完成在用户空间模拟对线程的支持。不幸的是,这种方法有一些缺点,尤其是在信号处
    理、调度和进程间同步等方面都存在问题。另外,这个线程模型也不符合 POSIX 的要求。
  • 要改进 LinuxThreads,需要内核的支持,并且重写线程库。有两个相互竞争的项目开始
    来满足这些要求。一个包括 IBM 的开发人员的团队开展了 NGPT(Next-Generation
    POSIX Threads)项目。同时,Red Hat 的一些开发人员开展了 NPTL 项目。NGPT
    在 2003 年中期被放弃了,把这个领域完全留给了 NPTL。
  • NPTL,或称为 Native POSIX Thread Library,是 Linux 线程的一个新实现,它
    克服了 LinuxThreads 的缺点,同时也符合 POSIX 的需求。与 LinuxThreads 相
    比,它在性能和稳定性方面都提供了重大的改进。
  • 查看当前 pthread 库版本:getconf GNU_LIBPTHREAD_VERSION

6.线程操作

  • int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine) (void *), void *arg);
  • pthread_t pthread_self(void);
  • int pthread_equal(pthread_t t1, pthread_t t2);
  • void pthread_exit(void *retval);
  • int pthread_join(pthread_t thread, void **retval);
  • int pthread_detach(pthread_t thread);
  • int pthread_cancel(pthread_t thread);

pthread_create.c

main函数执行主线程的代码,callback执行子线程的代码,并且两者会抢占CPU的资源

/*
    一般情况下,main函数所在的线程我们称之为主线程(main线程),其余创建的线程
    称之为子线程。
    程序中默认只有一个进程,fork()函数调用,2进行
    程序中默认只有一个线程,pthread_create()函数调用,2个线程。

    #include <pthread.h>
    int pthread_create(pthread_t *thread, const pthread_attr_t *attr, 
    void *(*start_routine) (void *), void *arg);

        - 功能:创建一个子线程
        - 参数:
            - thread:传出参数,线程创建成功后,子线程的线程ID被写到该变量中。
            - attr : 设置线程的属性,一般使用默认值,NULL
            - start_routine : 函数指针,这个函数是子线程需要处理的逻辑代码
            - arg : 给第三个参数使用,传参
        - 返回值:
            成功:0
            失败:返回错误号。这个错误号和之前errno不太一样。
            获取错误号的信息:  char * strerror(int errnum);

*/
#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <unistd.h>

void * callback(void * arg) {
    printf("child thread...\n");
    printf("arg value: %d\n", *(int *)arg);
    return NULL;
}

int main() {

    pthread_t tid;

    int num = 10;

    // 创建一个子线程
    int ret = pthread_create(&tid, NULL, callback, (void *)&num);

    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error : %s\n", errstr);
    } 

    for(int i = 0; i < 5; i++) {
        printf("%d\n", i);
    }

    sleep(1);

    return 0;   // exit(0);
}

pthread_exit.c

/*

    #include <pthread.h>
    void pthread_exit(void *retval);
        功能:终止一个线程,在哪个线程中调用,就表示终止哪个线程
        参数:
            retval:需要传递一个指针,作为一个返回值,可以在pthread_join()中获取到。

    pthread_t pthread_self(void);
        功能:获取当前的线程的线程ID

    int pthread_equal(pthread_t t1, pthread_t t2);
        功能:比较两个线程ID是否相等
        不同的操作系统,pthread_t类型的实现不一样,有的是无符号的长整型,有的
        是使用结构体去实现的。
*/
#include <stdio.h>
#include <pthread.h>
#include <string.h>

void * callback(void * arg) {
    printf("child thread id : %ld\n", pthread_self());
    return NULL;    // pthread_exit(NULL);
} 

int main() {

    // 创建一个子线程
    pthread_t tid;
    int ret = pthread_create(&tid, NULL, callback, NULL);

    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error : %s\n", errstr);
    }

    // 主线程
    for(int i = 0; i < 5; i++) {
        printf("%d\n", i);
    }

    printf("tid : %ld, main thread id : %ld\n", tid ,pthread_self());

    // 让主线程退出,当主线程退出时,不会影响其他正常运行的线程。
    pthread_exit(NULL);

    printf("main thread exit\n");

    return 0;   // exit(0);
}

pthread_join.c

/*
    #include <pthread.h>
    int pthread_join(pthread_t thread, void **retval);
        - 功能:和一个已经终止的线程进行连接
                回收子线程的资源
                这个函数是阻塞函数,调用一次只能回收一个子线程
                一般在主线程中使用
        - 参数:
            - thread:需要回收的子线程的ID
            - retval: 接收子线程退出时的返回值
        - 返回值:
            0 : 成功
            非0 : 失败,返回的错误号
*/

#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <unistd.h>

int value = 10;

void * callback(void * arg) {
    printf("child thread id : %ld\n", pthread_self());
    // sleep(3);
    // return NULL; 
    // int value = 10; // 局部变量
    pthread_exit((void *)&value);   // return (void *)&value;
} 

int main() {

    // 创建一个子线程
    pthread_t tid;
    int ret = pthread_create(&tid, NULL, callback, NULL);

    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error : %s\n", errstr);
    }

    // 主线程
    for(int i = 0; i < 5; i++) {
        printf("%d\n", i);
    }

    printf("tid : %ld, main thread id : %ld\n", tid ,pthread_self());

    // 主线程调用pthread_join()回收子线程的资源
    int * thread_retval;
    ret = pthread_join(tid, (void **)&thread_retval);

    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error : %s\n", errstr);
    }

    printf("exit data : %d\n", *thread_retval);

    printf("回收子线程资源成功!\n");

    // 让主线程退出,当主线程退出时,不会影响其他正常运行的线程。
    pthread_exit(NULL);

    return 0; 
}

pthread_detach.c

/*
    #include <pthread.h>
    int pthread_detach(pthread_t thread);
        - 功能:分离一个线程。被分离的线程在终止的时候,会自动释放资源返回给系统。
          1.不能多次分离,会产生不可预料的行为。
          2.不能去连接一个已经分离的线程,会报错。
        - 参数:需要分离的线程的ID
        - 返回值:
            成功:0
            失败:返回错误号
*/
#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <unistd.h>

void * callback(void * arg) {
    printf("chid thread id : %ld\n", pthread_self());
    return NULL;
}

int main() {

    // 创建一个子线程
    pthread_t tid;

    int ret = pthread_create(&tid, NULL, callback, NULL);
    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error1 : %s\n", errstr);
    }

    // 输出主线程和子线程的id
    printf("tid : %ld, main thread id : %ld\n", tid, pthread_self());

    // 设置子线程分离,子线程分离后,子线程结束时对应的资源就不需要主线程释放
    ret = pthread_detach(tid);
    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error2 : %s\n", errstr);
    }

    // 设置分离后,对分离的子线程进行连接 pthread_join()
    // ret = pthread_join(tid, NULL);
    // if(ret != 0) {
    //     char * errstr = strerror(ret);
    //     printf("error3 : %s\n", errstr);
    // }

    pthread_exit(NULL);

    return 0;
}

pthread_cancel.c

/*
    #include <pthread.h>
    int pthread_cancel(pthread_t thread);
        - 功能:取消线程(让线程终止)
            取消某个线程,可以终止某个线程的运行,
            但是并不是立马终止,而是当子线程执行到一个取消点,线程才会终止。
            取消点:系统规定好的一些系统调用,我们可以粗略的理解为从用户区到内核区的切换,这个位置称之为取消点。
*/

#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <unistd.h>

void * callback(void * arg) {
    printf("chid thread id : %ld\n", pthread_self());
    for(int i = 0; i < 5; i++) {
        printf("child : %d\n", i);
    }
    return NULL;
}

int main() {
    
    // 创建一个子线程
    pthread_t tid;

    int ret = pthread_create(&tid, NULL, callback, NULL);
    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error1 : %s\n", errstr);
    }

    // 取消线程
    pthread_cancel(tid);

    for(int i = 0; i < 5; i++) {
        printf("%d\n", i);
    }

    // 输出主线程和子线程的id
    printf("tid : %ld, main thread id : %ld\n", tid, pthread_self());

    
    pthread_exit(NULL);

    return 0;
}

7.线程属性

  • 线程属性类型 pthread_attr_t
  • int pthread_attr_init(pthread_attr_t *attr);
  • int pthread_attr_destroy(pthread_attr_t *attr);
  • int pthread_attr_getdetachstate(const pthread_attr_t *attr, int *detachstate);
  • int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);

pthread_attr.c

/*
    int pthread_attr_init(pthread_attr_t *attr);
        - 初始化线程属性变量

    int pthread_attr_destroy(pthread_attr_t *attr);
        - 释放线程属性的资源

    int pthread_attr_getdetachstate(const pthread_attr_t *attr, int *detachstate);
        - 获取线程分离的状态属性

    int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);
        - 设置线程分离的状态属性
*/     

#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <unistd.h>

void * callback(void * arg) {
    printf("chid thread id : %ld\n", pthread_self());
    return NULL;
}

int main() {

    // 创建一个线程属性变量
    pthread_attr_t attr;
    // 初始化属性变量
    pthread_attr_init(&attr);

    // 设置属性
    pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

    // 创建一个子线程
    pthread_t tid;

    int ret = pthread_create(&tid, &attr, callback, NULL);
    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error1 : %s\n", errstr);
    }

    // 获取线程的栈的大小
    size_t size;
    pthread_attr_getstacksize(&attr, &size);
    printf("thread stack size : %ld\n", size);

    // 输出主线程和子线程的id
    printf("tid : %ld, main thread id : %ld\n", tid, pthread_self());

    // 释放线程属性资源
    pthread_attr_destroy(&attr);

    pthread_exit(NULL);

    return 0;
}

二、线程同步【重点】

1.线程概述

◼ 线程的主要优势在于,能够通过全局变量来共享信息。不过,这种便捷的共享是有代价
的:必须确保多个线程不会同时修改同一变量,或者某一线程不会读取正在由其他线程
修改的变量。
◼ 临界区是指访问某一共享资源的代码片段,并且这段代码的执行应为原子操作,也就是
同时访问同一共享资源的其他线程不应终端该片段的执行。
◼ 线程同步:即当有一个线程在对内存进行操作时,其他线程都不可以对这个内存地址进
行操作,直到该线程完成操作,其他线程才能对该内存地址进行操作,而其他线程则处
于等待状态。

2.互斥量(互斥锁)

◼ 为避免线程更新共享变量时出现问题,可以使用互斥量(mutex 是 mutual exclusion
的缩写)来确保同时仅有一个线程可以访问某项共享资源。可以使用互斥量来保证对任意共
享资源的原子访问。
◼ 互斥量有两种状态:已锁定(locked)和未锁定(unlocked)。任何时候,至多只有一
个线程可以锁定该互斥量。试图对已经锁定的某一互斥量再次加锁,将可能阻塞线程或者报
错失败,具体取决于加锁时使用的方法。
◼ 一旦线程锁定互斥量,随即成为该互斥量的所有者,只有所有者才能给互斥量解锁。一般情
况下,对每一共享资源(可能由多个相关变量组成)会使用不同的互斥量,每一线程在访问
同一资源时将采用如下协议:
⚫ 针对共享资源锁定互斥量
⚫ 访问共享资源
⚫ 对互斥量解锁

比如上厕所先锁门,使用完之后打开锁,后面的人才能进去

◼ 如果多个线程试图执行这一块代码(一个临界区),事实上只有一个线程能够持有该互斥
量(其他线程将遭到阻塞),即同时只有一个线程能够进入这段代码区域,如下图所示:
在这里插入图片描述

selltickets.c

/*
    使用多线程实现买票的案例。
    有3个窗口,一共是100张票。
*/

#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

// 全局变量,所有的线程都共享这一份资源。
int tickets = 100;

void * sellticket(void * arg) {
    // 卖票
    while(tickets > 0) {
        usleep(6000);
        printf("%ld 正在卖第 %d 张门票\n", pthread_self(), tickets);
        tickets--;
    }
    return NULL;
}

int main() {

    // 创建3个子线程
    pthread_t tid1, tid2, tid3;
    pthread_create(&tid1, NULL, sellticket, NULL);
    pthread_create(&tid2, NULL, sellticket, NULL);
    pthread_create(&tid3, NULL, sellticket, NULL);

    // 回收子线程的资源,阻塞
    pthread_join(tid1, NULL);
    pthread_join(tid2, NULL);
    pthread_join(tid3, NULL);

    // 设置线程分离。
    // pthread_detach(tid1);
    // pthread_detach(tid2);
    // pthread_detach(tid3);

    pthread_exit(NULL); // 退出主线程

    return 0;
}

3.互斥量相关操作函数

◼ 互斥量的类型 pthread_mutex_t
◼ int pthread_mutex_init(pthread_mutex_t *restrict mutex, const pthread_mutexattr_t *restrict attr);
◼ int pthread_mutex_destroy(pthread_mutex_t *mutex);
◼ int pthread_mutex_lock(pthread_mutex_t *mutex);
◼ int pthread_mutex_trylock(pthread_mutex_t *mutex);
◼ int pthread_mutex_unlock(pthread_mutex_t *mutex);

pthread_mutex_trylock 尝试获取锁,如果没有获取到它也不会阻塞,继续向下执行

mutex.c

/*
    互斥量的类型 pthread_mutex_t
    int pthread_mutex_init(pthread_mutex_t *restrict mutex, const pthread_mutexattr_t *restrict attr);
        - 初始化互斥量
        - 参数 :
            - mutex : 需要初始化的互斥量变量
            - attr : 互斥量相关的属性,NULL
        - restrict : C语言的修饰符,被修饰的指针,不能由另外的一个指针进行操作。
            pthread_mutex_t *restrict mutex = xxx;
            pthread_mutex_t * mutex1 = mutex;

    int pthread_mutex_destroy(pthread_mutex_t *mutex);
        - 释放互斥量的资源

    int pthread_mutex_lock(pthread_mutex_t *mutex);
        - 加锁,阻塞的,如果有一个线程加锁了,那么其他的线程只能阻塞等待

    int pthread_mutex_trylock(pthread_mutex_t *mutex);
        - 尝试加锁,如果加锁失败,不会阻塞,会直接返回。

    int pthread_mutex_unlock(pthread_mutex_t *mutex);
        - 解锁
*/
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

// 全局变量,所有的线程都共享这一份资源。
int tickets = 1000;

// 创建一个互斥量
pthread_mutex_t mutex;

void * sellticket(void * arg) {

    // 卖票
    while(1) {

        // 加锁
        pthread_mutex_lock(&mutex);

        if(tickets > 0) {
            usleep(6000);
            printf("%ld 正在卖第 %d 张门票\n", pthread_self(), tickets);
            tickets--;
        }else {
            // 解锁
            pthread_mutex_unlock(&mutex);
            break;
        }

        // 解锁
        pthread_mutex_unlock(&mutex);
    }

    

    return NULL;
}

int main() {

    // 初始化互斥量
    pthread_mutex_init(&mutex, NULL);

    // 创建3个子线程
    pthread_t tid1, tid2, tid3;
    pthread_create(&tid1, NULL, sellticket, NULL);
    pthread_create(&tid2, NULL, sellticket, NULL);
    pthread_create(&tid3, NULL, sellticket, NULL);

    // 回收子线程的资源,阻塞
    pthread_join(tid1, NULL);
    pthread_join(tid2, NULL);
    pthread_join(tid3, NULL);

    pthread_exit(NULL); // 退出主线程

    // 释放互斥量资源
    pthread_mutex_destroy(&mutex);

    return 0;
}

4.死锁

◼ 有时,一个线程需要同时访问两个或更多不同的共享资源,而每个资源又都由不同的互
斥量管理。当超过一个线程加锁同一组互斥量时,就有可能发生死锁。
◼ 两个或两个以上的进程在执行过程中,因争夺共享资源而造成的一种互相等待的现象,
若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁。
◼ 死锁的几种场景:
 忘记释放锁
 重复加锁
 多线程多锁,抢占锁资源
在这里插入图片描述

deadlock.c

  • 忘记解锁,只有第一个进来的线程能拿到锁,其他的都拿不到
  • 多次拿锁,拿不到
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

// 全局变量,所有的线程都共享这一份资源。
int tickets = 1000;

// 创建一个互斥量
pthread_mutex_t mutex;

void * sellticket(void * arg) {

    // 卖票
    while(1) {

        // 加锁
        pthread_mutex_lock(&mutex);
        pthread_mutex_lock(&mutex);

        if(tickets > 0) {
            usleep(6000);
            printf("%ld 正在卖第 %d 张门票\n", pthread_self(), tickets);
            tickets--;
        }else {
            // 解锁
            pthread_mutex_unlock(&mutex);
            break;
        }

        // 解锁
        pthread_mutex_unlock(&mutex);
        pthread_mutex_unlock(&mutex);
    }

    return NULL;
}

int main() {

    // 初始化互斥量
    pthread_mutex_init(&mutex, NULL);

    // 创建3个子线程
    pthread_t tid1, tid2, tid3;
    pthread_create(&tid1, NULL, sellticket, NULL);
    pthread_create(&tid2, NULL, sellticket, NULL);
    pthread_create(&tid3, NULL, sellticket, NULL);

    // 回收子线程的资源,阻塞
    pthread_join(tid1, NULL);
    pthread_join(tid2, NULL);
    pthread_join(tid3, NULL);

    pthread_exit(NULL); // 退出主线程

    // 释放互斥量资源
    pthread_mutex_destroy(&mutex);

    return 0;
}

deadlock1.c

线程A拿到锁1,线程B拿到锁2;线程A等待B的锁2,线程B等待A的锁1;互相僵持

#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

// 创建2个互斥量
pthread_mutex_t mutex1, mutex2;

void * workA(void * arg) {

    pthread_mutex_lock(&mutex1);
    sleep(1);
    pthread_mutex_lock(&mutex2);

    printf("workA....\n");

    pthread_mutex_unlock(&mutex2);
    pthread_mutex_unlock(&mutex1);
    return NULL;
}


void * workB(void * arg) {
    pthread_mutex_lock(&mutex2);
    sleep(1);
    pthread_mutex_lock(&mutex1);

    printf("workB....\n");

    pthread_mutex_unlock(&mutex1);
    pthread_mutex_unlock(&mutex2);

    return NULL;
}

int main() {

    // 初始化互斥量
    pthread_mutex_init(&mutex1, NULL);
    pthread_mutex_init(&mutex2, NULL);

    // 创建2个子线程
    pthread_t tid1, tid2;
    pthread_create(&tid1, NULL, workA, NULL);
    pthread_create(&tid2, NULL, workB, NULL);

    // 回收子线程资源
    pthread_join(tid1, NULL);
    pthread_join(tid2, NULL);

    // 释放互斥量资源
    pthread_mutex_destroy(&mutex1);
    pthread_mutex_destroy(&mutex2);

    return 0;
}

5.读写锁

◼ 当有一个线程已经持有互斥锁时,互斥锁将所有试图进入临界区的线程都阻塞住。但是考
虑一种情形,当前持有互斥锁的线程只是要读访问共享资源,而同时有其它几个线程也想
读取这个共享资源,但是由于互斥锁的排它性,所有其它线程都无法获取锁,也就无法读
访问共享资源了,但是实际上多个线程同时读访问共享资源并不会导致问题。
◼ 在对数据的读写操作中,更多的是读操作,写操作较少,例如对数据库数据的读写应用。
为了满足当前能够允许多个读出,但只允许一个写入的需求,线程提供了读写锁来实现。
◼ 读写锁的特点:
 如果有其它线程读数据,则允许其它线程执行读操作,但不允许写操作。
 如果有其它线程写数据,则其它线程都不允许读、写操作。
 写是独占的,写的优先级高。

6.读写锁相关操作函数

◼ 读写锁的类型 pthread_rwlock_t
◼ int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, const pthread_rwlockattr_t *restrict attr);
◼ int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);
◼ int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
◼ int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);
◼ int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
◼ int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
◼ int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

rwlock.c

/*
    读写锁的类型 pthread_rwlock_t
    int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, const pthread_rwlockattr_t *restrict attr);
    int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);
    int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
    int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);
    int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
    int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
    int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

    案例:8个线程操作同一个全局变量。
    3个线程不定时写这个全局变量,5个线程不定时的读这个全局变量
*/

#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

// 创建一个共享数据
int num = 1;
// pthread_mutex_t mutex;
pthread_rwlock_t rwlock;

void * writeNum(void * arg) {

    while(1) {
        pthread_rwlock_wrlock(&rwlock);
        num++;
        printf("++write, tid : %ld, num : %d\n", pthread_self(), num);
        pthread_rwlock_unlock(&rwlock);
        usleep(100);
    }

    return NULL;
}

void * readNum(void * arg) {

    while(1) {
        pthread_rwlock_rdlock(&rwlock);
        printf("===read, tid : %ld, num : %d\n", pthread_self(), num);
        pthread_rwlock_unlock(&rwlock);
        usleep(100);
    }

    return NULL;
}

int main() {

   pthread_rwlock_init(&rwlock, NULL);

    // 创建3个写线程,5个读线程
    pthread_t wtids[3], rtids[5];
    for(int i = 0; i < 3; i++) {
        pthread_create(&wtids[i], NULL, writeNum, NULL);
    }

    for(int i = 0; i < 5; i++) {
        pthread_create(&rtids[i], NULL, readNum, NULL);
    }

    // 设置线程分离
    for(int i = 0; i < 3; i++) {
       pthread_detach(wtids[i]);
    }

    for(int i = 0; i < 5; i++) {
         pthread_detach(rtids[i]);
    }

    pthread_exit(NULL);

    pthread_rwlock_destroy(&rwlock);

    return 0;
}

7.生产者消费者模型

几个问题:

  • 这个仓库作为共享资源,如何解决线程安全问题?
  • 仓库满了,生产者不需要再消费;仓库空了,消费者等待有了再去消费
    在这里插入图片描述

prodcust.c

/*
    生产者消费者模型(粗略的版本)
*/
#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>

// 创建一个互斥量
pthread_mutex_t mutex;

struct Node{
    int num;
    struct Node *next;
};

// 头结点
struct Node * head = NULL;

void * producer(void * arg) {

    // 不断的创建新的节点,添加到链表中
    while(1) {
        pthread_mutex_lock(&mutex);
        struct Node * newNode = (struct Node *)malloc(sizeof(struct Node));
        newNode->next = head;
        head = newNode;
        newNode->num = rand() % 1000;
        printf("add node, num : %d, tid : %ld\n", newNode->num, pthread_self());
        pthread_mutex_unlock(&mutex);
        usleep(100);
    }

    return NULL;
}

void * customer(void * arg) {

    while(1) {
        pthread_mutex_lock(&mutex);
        // 保存头结点的指针
        struct Node * tmp = head;

        // 判断是否有数据
        if(head != NULL) {
            // 有数据
            head = head->next;
            printf("del node, num : %d, tid : %ld\n", tmp->num, pthread_self());
            free(tmp);
            pthread_mutex_unlock(&mutex);
            usleep(100);
        } else {
            // 没有数据
            pthread_mutex_unlock(&mutex);
        }
    }
    return  NULL;
}

int main() {

    pthread_mutex_init(&mutex, NULL);

    // 创建5个生产者线程,和5个消费者线程
    pthread_t ptids[5], ctids[5];

    for(int i = 0; i < 5; i++) {
        pthread_create(&ptids[i], NULL, producer, NULL);
        pthread_create(&ctids[i], NULL, customer, NULL);
    }

    for(int i = 0; i < 5; i++) {
        pthread_detach(ptids[i]);
        pthread_detach(ctids[i]);
    }

    while(1) {
        sleep(10);
    }

    pthread_mutex_destroy(&mutex);

    pthread_exit(NULL);

    return 0;
}

8.条件变量【解决生产者消费者模型】

◼ 条件变量的类型 pthread_cond_t
◼ int pthread_cond_init(pthread_cond_t *restrict cond, const pthread_condattr_t *restrict attr);
◼ int pthread_cond_destroy(pthread_cond_t *cond);
◼ int pthread_cond_wait(pthread_cond_t *restrict cond, pthread_mutex_t *restrict mutex);
◼ int pthread_cond_timedwait(pthread_cond_t *restrict cond, pthread_mutex_t *restrict mutex, const struct timespec *restrict abstime);
◼ int pthread_cond_signal(pthread_cond_t *cond);
◼ int pthread_cond_broadcast(pthread_cond_t *cond);

cond.c

当仓库没有结点的时候,消费者需要阻塞等待;当生产者产生一个结点的时候,就唤醒一个或多个消费者去消费。

  • 关于pthread_cond_wait ,消费者拿了锁,因为没有结点消费而阻塞等待。那么生产者怎么拿到锁去生产呢?(因为这个互斥锁是共享资源)
  • 解决:当这个函数调用阻塞的时候,会对互斥锁进行解锁,当不阻塞的,继续向下执行,会重新加锁。
/*
    条件变量的类型 pthread_cond_t
    int pthread_cond_init(pthread_cond_t *restrict cond, const pthread_condattr_t *restrict attr);
    int pthread_cond_destroy(pthread_cond_t *cond);
    int pthread_cond_wait(pthread_cond_t *restrict cond, pthread_mutex_t *restrict mutex);
        - 等待,调用了该函数,线程会阻塞。
    int pthread_cond_timedwait(pthread_cond_t *restrict cond, pthread_mutex_t *restrict mutex, const struct timespec *restrict abstime);
        - 等待多长时间,调用了这个函数,线程会阻塞,直到指定的时间结束。
    int pthread_cond_signal(pthread_cond_t *cond);
        - 唤醒一个或者多个等待的线程
    int pthread_cond_broadcast(pthread_cond_t *cond);
        - 唤醒所有的等待的线程
*/
#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>

// 创建一个互斥量
pthread_mutex_t mutex;
// 创建条件变量
pthread_cond_t cond;

struct Node{
    int num;
    struct Node *next;
};

// 头结点
struct Node * head = NULL;

void * producer(void * arg) {

    // 不断的创建新的节点,添加到链表中
    while(1) {
        pthread_mutex_lock(&mutex);
        struct Node * newNode = (struct Node *)malloc(sizeof(struct Node));
        newNode->next = head;
        head = newNode;
        newNode->num = rand() % 1000;
        printf("add node, num : %d, tid : %ld\n", newNode->num, pthread_self());
        
        // 只要生产了一个,就通知消费者消费
        pthread_cond_signal(&cond);

        pthread_mutex_unlock(&mutex);
        usleep(100);
    }

    return NULL;
}

void * customer(void * arg) {

    while(1) {
        pthread_mutex_lock(&mutex);
        // 保存头结点的指针
        struct Node * tmp = head;
        // 判断是否有数据
        if(head != NULL) {
            // 有数据
            head = head->next;
            printf("del node, num : %d, tid : %ld\n", tmp->num, pthread_self());
            free(tmp);
            pthread_mutex_unlock(&mutex);
            usleep(100);
        } else {
            // 没有数据,需要等待
            // 当这个函数调用阻塞的时候,会对互斥锁进行解锁,当不阻塞的,继续向下执行,会重新加锁。
            pthread_cond_wait(&cond, &mutex);
            pthread_mutex_unlock(&mutex);
        }
    }
    return  NULL;
}

int main() {

    pthread_mutex_init(&mutex, NULL);
    pthread_cond_init(&cond, NULL);

    // 创建5个生产者线程,和5个消费者线程
    pthread_t ptids[5], ctids[5];

    for(int i = 0; i < 5; i++) {
        pthread_create(&ptids[i], NULL, producer, NULL);
        pthread_create(&ctids[i], NULL, customer, NULL);
    }

    for(int i = 0; i < 5; i++) {
        pthread_detach(ptids[i]);
        pthread_detach(ctids[i]);
    }

    while(1) {
        sleep(10);
    }

    pthread_mutex_destroy(&mutex);
    pthread_cond_destroy(&cond);

    pthread_exit(NULL);

    return 0;
}

9.信号量【解决生产者消费者模型】

◼ 信号量的类型 sem_t
◼ int sem_init(sem_t *sem, int pshared, unsigned int value);
◼ int sem_destroy(sem_t *sem);
◼ int sem_wait(sem_t *sem);
◼ int sem_trywait(sem_t *sem);
◼ int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);
◼ int sem_post(sem_t *sem);
◼ int sem_getvalue(sem_t *sem, int *sval);

semaphore.c

生产者关注的是有几个空域,消费者关注的是几个包子。
比如仓库总数是6,包子数是4的话:生产者关注的是空的2,消费者关注的是4个包子;总数是相等的。

/*
    信号量的类型 sem_t
    int sem_init(sem_t *sem, int pshared, unsigned int value);
        - 初始化信号量
        - 参数:
            - sem : 信号量变量的地址
            - pshared : 0 用在线程间 ,非0 用在进程间
            - value : 信号量中的值

    int sem_destroy(sem_t *sem);
        - 释放资源

    int sem_wait(sem_t *sem);
        - 对信号量加锁,调用一次对信号量的值-1,如果值为0,就阻塞

    int sem_trywait(sem_t *sem);

    int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);
    int sem_post(sem_t *sem);
        - 对信号量解锁,调用一次对信号量的值+1

    int sem_getvalue(sem_t *sem, int *sval);

    sem_t psem;//生产者信号量
    sem_t csem;//消费者信号量
    init(psem, 0, 8);
    init(csem, 0, 0);

    producer() {
        sem_wait(&psem);
        sem_post(&csem)
    }

    customer() {
        sem_wait(&csem);
        sem_post(&psem)
    }

*/

#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>
#include <semaphore.h>

// 创建一个互斥量
pthread_mutex_t mutex;
// 创建两个信号量
sem_t psem;
sem_t csem;

struct Node{
    int num;
    struct Node *next;
};

// 头结点
struct Node * head = NULL;

void * producer(void * arg) {

    // 不断的创建新的节点,添加到链表中
    while(1) {
        sem_wait(&psem);
        pthread_mutex_lock(&mutex);
        struct Node * newNode = (struct Node *)malloc(sizeof(struct Node));
        newNode->next = head;
        head = newNode;
        newNode->num = rand() % 1000;
        printf("add node, num : %d, tid : %ld\n", newNode->num, pthread_self());
        pthread_mutex_unlock(&mutex);
        sem_post(&csem);
    }

    return NULL;
}

void * customer(void * arg) {

    while(1) {
        sem_wait(&csem);
        pthread_mutex_lock(&mutex);
        // 保存头结点的指针
        struct Node * tmp = head;
        head = head->next;
        printf("del node, num : %d, tid : %ld\n", tmp->num, pthread_self());
        free(tmp);
        pthread_mutex_unlock(&mutex);
        sem_post(&psem);
       
    }
    return  NULL;
}

int main() {

    pthread_mutex_init(&mutex, NULL);
    sem_init(&psem, 0, 8); //8
    sem_init(&csem, 0, 0);  //0

    // 创建5个生产者线程,和5个消费者线程
    pthread_t ptids[5], ctids[5];

    for(int i = 0; i < 5; i++) {
        pthread_create(&ptids[i], NULL, producer, NULL);
        pthread_create(&ctids[i], NULL, customer, NULL);
    }

    for(int i = 0; i < 5; i++) {
        pthread_detach(ptids[i]);
        pthread_detach(ctids[i]);
    }

    while(1) {
        sleep(10);
    }

    pthread_mutex_destroy(&mutex);

    pthread_exit(NULL);

    return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/459296.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

supervisor安装

说明 Supervisor翻译过来是监管人&#xff0c;在Linux中Supervisor是一个进程管理工具&#xff0c;当进程中断的时候Supervisor能自动重新启动它。可以运行在各种类Linux/unix的机器上&#xff0c;supervisor就是用Python开发的一套通用的进程管理程序&#xff0c;能将一个普通…

【别再困扰于LeetCode接雨水问题了 | 从暴力法=>动态规划=>单调栈】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

Spring使用总结

Spring框架使用 前言处理事务管理声明式事务&#xff1a;编程式事务&#xff1a; 框架核心常见注解 AOP&#xff08; 面向切面编程&#xff09;切面和通知有哪些类型&#xff1f;切面的类型通知类型AOP实现使用场景 IOC(管理所有的JavaBean)依赖注入&#xff08;DI&#xff09;…

道氏转02,水羊转债,超达转债,晓鸣转债,中旗转债上市价格预测

道氏转02 基本信息 转债名称&#xff1a;道氏转02&#xff0c;评级&#xff1a;AA-&#xff0c;发行规模&#xff1a;26.0亿元。 正股名称&#xff1a;道氏技术&#xff0c;今日收盘价&#xff1a;13.41元&#xff0c;转股价格&#xff1a;15.46元。 当前转股价值 转债面值 / …

大数据三驾马车与hadoop起源

背景介绍 Google成立于1998年是全球最大的搜索引擎公司&#xff0c;主要业务为搜索、云计算、广告技术等&#xff0c;主要利润来自于广告等服务。在21世纪初互联网刚刚兴起&#xff0c;每个企业保存和生产的数据量并不大&#xff0c;已有的技术对数据的保存和处理完全满足业务…

RabbitMQ支持消息的模式

一、简单模式 Simple 二、工作模式 Work 类型&#xff1a;无特点&#xff1a;分发机制 解释&#xff1a;当有多个消费者时&#xff0c;我们的消息会被哪个消费者消费呢&#xff0c;我们又该如何均衡消费者消费信息的多少呢? 主要有两种模式&#xff1a; 2.1 轮询分发&#xf…

2023年江苏专转本成绩查询步骤

2023年江苏专转本成绩查询时间 2023年江苏专转本成绩查询时间预计在5月初&#xff0c;参加考试的考生&#xff0c;可以关注考试院发布的消息。江苏专转本考生可在规定时间内在省教育考试院网&#xff0c;在查询中心页面中输入准考证号和身份证号进行查询&#xff0c;或者拨…

IDEA的BitoAI插件的简单使用指南(包括安装和注册)

注&#xff1a;插件声称使用的是GPT-4模型算法&#xff0c;并且多平台支持&#xff0c;包括vscode、pycharm等&#xff0c;这里只演示idea的安装和使用 1.安装 直接在idea的插件商城中搜索即可 2.注册 使用bito插件需要使用邮箱注册&#xff0c;注册非常简单&#xff0c;只需要…

【一起撸个DL框架】2 节点与计算图的搭建

CSDN个人主页&#xff1a;清风莫追 欢迎关注本专栏&#xff1a;《一起撸个DL框架》 文章目录 2 节点与计算图的搭建 &#x1f352;2.1 简介2.2 设计节点类2.3 节点类的具体实现2.4 搭建计算图进行计算2.5 小结2.6 题外话——节点存储的值 2 节点与计算图的搭建 &#x1f352; …

数据湖Iceberg-存储结构(2)

文章目录 存储结构数据文件 data files表快照 Snapshot清单列表 Manifest list清单文件 Manifest file 数据湖Iceberg-简介(1) 数据湖Iceberg-存储结构(2) 数据湖Iceberg-Hive集成Iceberg(3) 数据湖Iceberg-SparkSQL集成(4) 数据湖Iceberg-FlinkSQL集成(5) 数据湖Iceberg-Flink…

Redis入门到入土(day01)

NoSQL概述 为什么用NoSQL 1、单机MySQL的美好年代 在90年代&#xff0c;一个网站的访问量一般不大&#xff0c;用单个数据库完全可以轻松应付&#xff01; 在那个时候&#xff0c;更多的都是静态网页&#xff0c;动态交互类型的网站不多。 上述架构下&#xff0c;我们来看看…

一文详细介绍查看和启用nginx日志(access.log和error.log),nginx错误日志的安全级别,自定义访问日志中的格式

文章目录 1. 文章引言2. Nginx访问日志(access.log)2.1 简述访问日志2.2 启用Nginx访问日志2.3 自定义访问日志中的格式 3. Nginx错误日志(error.log)3.1 简述错误日志3.2 启用错误日志3.3 Nginx错误日志的安全级别 4. 文末总结 1. 文章引言 我们在实际工作中&#xff0c;经常使…

vue3中如何引入element-icon并使用

简单来说&#xff0c;步骤就是&#xff1a; 安装——注册——按需引入——使用 安装 # NPM $ npm install element-plus/icons-vue # Yarn $ yarn add element-plus/icons-vue # pnpm $ pnpm install element-plus/icons-vue注册 您需要从 element-plus/icons-vue 中导入所有…

【BI软件】零编程构建财务分析模型(行计算模型)

上一讲和大家讲到&#xff0c;自定义SQL是用个性化的开发去满足个性化的需求&#xff0c;而分析模型则是用共性的开发去满足个性化的需求。而分析模型的好处显而易见&#xff0c;通过分析模型来开发报表&#xff0c;更灵活、更高效&#xff0c;而且开发及运维的成本非常低。同时…

C++中引用的基本内容

个人主页&#xff1a;平行线也会相交 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 平行线也会相交 原创 收录于专栏【C之路】 引用&#xff0c;其实没啥特别的&#xff0c;就是起外号&#xff0c;或者说起小名。就比如说孙悟空就有很多外号&#xff0c;如…

基于Python实现个人手机定位分析

TransBigData是一个为交通时空大数据处理、分析和可视化而开发的Python包。本文就来用它实现个人手机定位分析&#xff0c;感兴趣的小伙伴可以了解一下 但其实交通时空大数据并不仅仅局限于交通工具产生的数据&#xff0c;我们的日常生活中也会产生大量的数据。比如我们的手机…

前端 百度地图绘制路线加上图片

使用百度官方示例的方法根据起终点经纬度查询驾车路线但是只是一个线路 <template><div class"transportInfo"><div id"mapcontainer" class"map">11</div><div class"collapse"><el-collapse v-mo…

CA(证书颁发机构)

CA 根证书路径/csk-rootca/csk-ca.pem&#xff1b; ~ 签发数字证书&#xff0c;颁发者信息&#xff1a;(仅包含如下信息) C CN ST China L BeiJing O skills OU Operations Departments CN CSK Global Root CA 1.修改证书的路径以及相关配置 vi /etc/pki/tls/op…

el-upload文件上传组件的封装

样式1 样式2 上传的格式 // annexUrl 数据格式如下[{"uid": 1682329534561,"name": "2023/04/24/273f36b860a74e79be3faed3ce20236f.pdf","suffix": ".pdf","url": "http://192.168.0.254:19000/annex/2023/…

JVM系列(十) 垃圾收集器之 Parallel Scavenge/Old

上篇文章我们讲解了单线程垃圾收集器 Serial/SerialOld &#xff0c;与之相对应的多线程垃圾收集器就是 Parallel Scavenge/Old&#xff0c; 本文我们讲解下多线程垃圾收集器 Parallel Scavenge/Old 垃圾收集器 新生代收集器&#xff1a; Serial、ParNew、Parallel Scavenge&…