多维时序 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元多变量时间序列预测

news2025/1/22 16:59:52

多维时序 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元多变量时间序列预测

目录

    • 多维时序 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元多变量时间序列预测
      • 效果一览
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

效果一览

1
2
3
4
5
6
7
8
9
10
11
12

基本介绍

基于贝叶斯(bayes)优化卷积神经网络-门控循环单元(CNN-GRU)多变量时间序列预测,BO-CNN-GRU/Bayes-CNN-GRU多变量时间序列预测模型。
1.优化参数为:学习率,隐含层节点,正则化参数。
2.评价指标包括:R2、MAE、MSE、RMSE和MAPE等,方便学习和替换数据。
3.运行环境matlab2020b及以上。

模型描述

  • CNN 是通过模仿生物视觉感知机制构建而成,能够进行有监督学习和无监督学习。隐含层的卷积核参数共享以及层间连接的稀疏性使得CNN 能够以较小的计算量从高维数据中提取深层次局部特征,并通过卷积层和池化层获得有效的表示。CNN 网络的结构包含两个卷积层和一个展平操作,每个卷积层包含一个卷积操作和一个池化操作。第二次池化操作后,再利用全连接层将高维数据展平为一维数据,从而更加方便的对数据进行处理。
    10

  • 当时间步数较大时,RNN 的历史梯度信息无法一直维持在一个合理的范围内,因此梯度衰减或爆炸几乎是不可避免的,从而导致RNN 将很难从长距离序列中捕捉到有效信息。LSTM 作为一种特殊的RNN,它的提出很好的解决了RNN 中梯度消失的问题。而GRU 则是在LSTM 的基础上提出的,其结构更简单,参数更少,训练时间短,训练速度也比LSTM更快。
    11

  • 为使模型具有自动提取特征的功能,一般采用深度学习的方法来进行构建。其中,CNN 在提取特征这方面能力较强,它通常依靠卷积核来对特征进行提取。但是,卷积核的存在又限制了CNN 在处理时间序列数据时的长期依赖性问题。

  • 在这项研究中,GRU 的引入可以有效地解决这个问题,并且我们可以捕获时间序列前后的依赖关系。另一方面, GRU 模块的目的是捕获长期依赖关系,它可以通过存储单元长时间学习历史数据中的有用信息,无用的信息将被遗忘门遗忘。另外,直接用原始特征进行处理,会极大的占用模型的算力,从而降低模型的预测精度,CNN-GRU模型结合了CNN和GRU的优点。

  • 通常,在模型训练过程中需要对超参数进行优化,为模型选择一组最优的超参数,以提高预测的性能和有效性。 凭经验设置超参数会使最终确定的模型超参数组合不一定是最优的,这会影响模型网络的拟合程度及其对测试数据的泛化能力。

  • 伪代码
    9

  • 通过调整优化算法调整模型参数,学习重复率和贝叶斯优化超参数来调整模型参数。

程序设计

  • 完整程序和数据获取方式1:私信博主,同等价值程序兑换;
  • 完整程序和数据下载方式2(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的所有程序,数据订阅后私信我获取):MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元多变量时间序列预测
%%  优化算法参数设置
%参数取值上界(学习率,隐藏层节点,正则化系数)
%%  贝叶斯优化参数范围
optimVars = [
    optimizableVariable('NumOfUnits', [10, 50], 'Type', 'integer')
    optimizableVariable('InitialLearnRate', [1e-3, 1], 'Transform', 'log')
    optimizableVariable('L2Regularization', [1e-10, 1e-2], 'Transform', 'log')];

%%  贝叶斯优化网络参数
BayesObject = bayesopt(fitness, optimVars, ...    % 优化函数,和参数范围
        'MaxTime', Inf, ...                      % 优化时间(不限制) 
        'IsObjectiveDeterministic', false, ...
        'MaxObjectiveEvaluations', 10, ...       % 最大迭代次数
        'Verbose', 1, ...                        % 显示优化过程
        'UseParallel', false);

%% 创建混合CNN-GRU网络架构
%  创建"CNN-GRU"模型
    layers = [...
        % 输入特征
        sequenceInputLayer([numFeatures 1 1],'Name','input')
        sequenceFoldingLayer('Name','fold')
        % CNN特征提取
        convolution2dLayer([FiltZise 1],32,'Padding','same','WeightsInitializer','he','Name','conv','DilationFactor',1);
        batchNormalizationLayer('Name','bn')
        eluLayer('Name','elu')
        averagePooling2dLayer(1,'Stride',FiltZise,'Name','pool1')
        % 展开层
        sequenceUnfoldingLayer('Name','unfold')
        % 平滑层
        flattenLayer('Name','flatten')
        % GRU特征学习
        gruLayer(50,'Name','gru1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
        % GRU输出
        gruLayer(NumOfUnits,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
        dropoutLayer(0.25,'Name','drop3')
        % 全连接层
        fullyConnectedLayer(numResponses,'Name','fc')
        regressionLayer('Name','output')    ];

    layers = layerGraph(layers);
    layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/455386.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

开放式耳机有什么好处,分享几款高畅销的开放式耳机

开放式耳机是一种声音传导方式,主要通过颅骨、骨骼把声波传递到内耳,属于非入耳式的佩戴方式。相比传统入耳式耳机,开放式耳机不会堵塞耳道,使用时可以开放双耳,不影响与他人的正常交流。开放式耳机不会对耳朵产生任何…

RocketMQ整合代码

RocketMQ整合代码 一 构建Java基础环境 在maven项⽬中构建出RocketMQ消息示例的基础环境&#xff0c;即创建⽣产者程序和消费者程序。通过⽣产者和消费者了解RocketMQ操作消息的原⽣API 引⼊依赖 <dependencies><dependency><groupId>org.apache.rocketmq&…

HCIP——交换(更新中)

园区网架构 交换机实现了以下功能 无限的传输距离——识别&#xff0c;重写电信号&#xff08;帧&#xff09;保证信息完整彻底解决了冲突二层单播——MAC地址表提高端口密度 MAC 单播地址&#xff1a;MAC地址第一个字节第8位为0 组播地址&#xff1a;MAC地址第一个字节第8位…

我完全手写的Resnet50网络,终于把猫识别出来了

大家好啊&#xff0c;我是董董灿。 经常看我文章的同学&#xff0c;可能知道最近我在做一个小项目——《从零手写Resnet50实战》。 从零开始&#xff0c;用最简单的程序语言&#xff0c;不借用任何第三方库&#xff0c;完成Resnet50的所有算法实现和网络结构搭建&#xff0c;…

SOS大规模敏捷开发项目管理完整版(Scrum of Scrums)

Scrum of Scrums是轻量化的规模化敏捷管理模式&#xff0c;Leangoo领歌可以完美支持Scrum of Scrums多团队敏捷管理。 Scrum of Scrums的场景 Scrum of Scrums是指多个敏捷团队共同开发一个大型产品、项目或解决方案。Leangoo提供了多团队场景下的产品路线图规划、需求管理、…

2023首场亚马逊云科技行业峰会,医疗与生命科学年度盛会精彩先行

从实验室扩展到真实世界&#xff0c;从前沿技术探索到医疗生命科学行业的快速创新实践&#xff0c;亚马逊云科技不断地通过数字化助力医疗和生命科学的行业创新。由上海徐汇区科委指导&#xff0c;上海枫林集团作为支持单位&#xff0c;亚马逊云科技主办的2023亚马逊云科技医疗…

如何评估小程序开发费用:从项目规模到技术需求

作为一种越来越受欢迎的移动应用&#xff0c;小程序的开发费用是许多企业和个人考虑的重要因素之一。但是&#xff0c;要确定小程序开发费用并不是一件容易的事情&#xff0c;因为它涉及到多个因素&#xff0c;从项目规模到技术需求。 项目规模 小程序开发的费用通常与项目规…

docker-Dockerfile文件使用配置、自定义构建镜像、docker build

Dockerfile使用 docker build构建新的镜像参数解释 Dockerfile格式基础格式FROMCOPYADDRUNCMDENTRYPOINTENVARGVOLUMEEXPOSEWORKDIRUSERHEALTHCHECKONBUILDLABEL 命令摘要 docker build构建新的镜像 命令&#xff1a;docker build -t some-content-nginx . 参数解释 docker …

2023团体程序设计天梯赛--正式赛

L1-1 最好的文档 有一位软件工程师说过一句很有道理的话&#xff1a;“Good code is its own best documentation.”&#xff08;好代码本身就是最好的文档&#xff09;。本题就请你直接在屏幕上输出这句话。 输入格式&#xff1a; 本题没有输入。 输出格式&#xff1a; 在…

Pytorch的几种常用优化器

文章目录 AdagradSGDRMSpropAdamAdamW Adagrad Adagrad是一种可以自动调节每个参数更新的梯度的优化器&#xff0c;也可以做到在梯度平缓时走的步长大&#xff0c;在梯度小时走的步长小&#xff0c;从而防止loss出现剧烈震荡的情况。这里默认你已知道了他的原理了&#xff0c;…

SpringBoot自动配置原理详解

1 前言 之前也写过一篇类似的文章&#xff0c;但是当时理解的并不是很深入&#xff0c;所以一直想重新写&#xff0c;但是一直没有时间&#xff0c;就拖到了现在。这篇文章可能会很长&#xff0c;因为在讲解自动配置的过程中还会衍生出其他一些重要的知识点&#xff0c;我也会…

2023文本定位模型选型调研

背景 时间点&#xff1a;2023年03月 场景&#xff1a;做一个通用型的多种证件解析服务 需求&#xff1a;调研一种又新又快的定位模型。要求&#xff1a;1&#xff09;支持倾斜的文字&#xff0c;可以是4点定位或分割法后获取box&#xff0c;但不能是2点的定位&#xff1b;2&…

2023.4.23第五十次周报

目录 前言 文献阅读&#xff1a;基于ARIMA-WOA-LSTM模型的空气污染物预测 背景 ARIMA-WOA-LSTM模型 思路 主要贡献 积分移动平均自回归 &#xff08;ARIMA&#xff09; 鲸鱼优化算法 搜索超参数 CEEMDAN 结论 LSTM-Kriging 主要目标 理论猜想 问1&#xff1a…

如何申请百度地图开发者AK和基本使用,并解决Uncaught ReferenceError: BMapGL is not defined的错误

文章目录 1. 文章引言2. 申请AK3. 使用AK4. 解决BMapGL is not defined的错误5. 文末总结 1. 文章引言 今天在学习amis框架中的地理位置(LocationPicker)的组件&#xff0c;如下图所示&#xff1a; 关于amis的更多了解&#xff0c;可以参考博文&#xff1a;百度低代码amis框架的…

适合学生的平价蓝牙耳机有哪些?学生平价蓝牙耳机推荐

随着蓝牙耳机的使用越来越频繁&#xff0c;近几年也出现了很多优质的蓝牙耳机&#xff0c;不仅有着超高的性价比&#xff0c;而且使用体验也有了很大的突破。接下来&#xff0c;我来给大家推荐几款适合学生使用的平价蓝牙耳机&#xff0c;可以当个参考。 一、南卡小音舱Lite2蓝…

Java基础--->基础部分(1)

文章目录 Java语言特点JVM、JRE和JDK的关系什么是字节码&#xff1f;采用字节码的好处是什么&#xff1f;面向对象面向对象的三大特征&#xff1a;封装&#xff0c;继承&#xff0c;多态关键字抽象类和接口特点和区别和equals的区别String、StringBuffer、StringBuilder异常 Ja…

中医脉诊仪:结合传统与现代技术的诊断工具

一、引言 随着科技的不断发展&#xff0c;医学领域也取得了举世瞩目的进步。中医作为一种古老的医学体系&#xff0c;始终保持着其独特的魅力。脉诊作为中医诊断的重要方法之一&#xff0c;历经千年的发展和传承&#xff0c;如今在现代科技的助力下&#xff0c;诞生了中医脉诊…

PostgreSQL标准复制方案

集群拓扑 假设我们使用4单元的标准配置&#xff1a;主库&#xff0c;同步从库&#xff0c;延迟备库&#xff0c;远程备库&#xff0c;分别用字母M,S,O,R标识。 M&#xff1a;Master, Main, Primary, Leader, 主库&#xff0c;权威数据源。S: Slave, Secondary, Standby, Sync…

CTFSHOW web入门——web37

过滤了flag&#xff0c;即c中不能有flag字段。 include包含变量c&#xff0c;因此可以利用文件包含漏洞&#xff0c;让变量c变成php代码&#xff0c;然后通过include函数执行。可以使用data协议获取flag.php文件中的内容 data://协议 通常可以用来执行PHP代码 data://text/pl…

FFmpeg PCM 编码 AAC

1. 概要说明与流程图 1.1 概要: 1) FFmpeg 已经废弃了 AV_SAMPLE_FMT_S16 格式 PCM 编码 AAC,也就是说如果使用 FFmpeg 自带的 AAC 编码器,必须做音频的重采样(重采样为:AV_SAMPLE_FMT_FLTP),否则AAC编码是失败的。 2) 传输 PCM 数据时,采取截取缓存机制,解决接收数据包…