C++语法(19)---- 模拟AVL树_哈里沃克的博客-CSDN博客https://blog.csdn.net/m0_63488627/article/details/130229501?spm=1001.2014.3001.5501
目录
1.红黑树介绍
2.模拟实现
1.枚举红黑颜色
2.节点的定义
3.树类框架
4.插入
5.检查
3.代码实现
1.红黑树介绍
最长路径不超过最短路径的两倍,近似平衡
最短:全黑
最长:一半黑一半红
1.每个节点不是红色就是黑色
2.根节点是黑色
3.如果一个节点是红色,它的两个孩子节点是黑色
4.每条路径都有相同数量的黑色节点
5.叶子节点(NIL节点)是黑的
满二叉树:全黑,或者每条路径一黑一红
较优情况:越均衡即越平衡
最差红黑树:左边全黑,右边一黑一红
较差情况:越不均衡
对比起AVL树,其实红黑树没有那么的较劲平衡,AVL的平衡得益于它不断的旋转。但是红黑树为了一些性能牺牲了平衡,减少了旋转的情况。
2.模拟实现
1.枚举红黑颜色
enum Color
{
Black,
Red,
};
2.节点的定义
template<class K, class V>
struct BRTreeNode
{
pair<K, V> _kv;
BRTreeNode* _left;
BRTreeNode* _right;
BRTreeNode* _parent;
Color _col;
BRTreeNode(const pair<K, V>& kv)
:_kv(kv)
, _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _col(Red)
{}
};
定义一个节点时要注意其颜色:不过黑红的地位有所不同,选择决定后续的执行是否简单
选择红色:违背红色不能连续出现
选择黑色:违背整体路径黑色数量一致
我们认为选择红色更好,因为红色调节节点即可,黑色调节整个路径
3.树类框架
template<class K, class V>
class BRTree
{
private:
Node* _root = nullptr;
};
4.插入
1.插入的头节点为根节点,根节点的颜色为黑色
2.普通插入的逻辑和搜索二叉树的逻辑一致
3.到这里就需判断是否两个红色节点连续,下面的问题就是调节双红色问题
调节双红色问题
情况一
插入红色节点其父节点和叔叔节点都是红色,那么我们要调整父节点和叔叔节点为黑色,不过如果只是调整这一步,那么这条树的分支就比别的树黑色节点多一个,所以我们还要更新祖父节点为红色,但是祖父为红不能保证它的父节点是黑的,所以我们仍然要往上判断
情况二
单旋加变色
叔叔节点是黑色或者不存在,如果只是把父节点变黑是不够的,因为高度超了,所以我们要用到左右旋。
情况三
双旋加变色
这样就变成了情况二
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
_root->_col = Black;
return true;
}
//父子节点确定插入的位置
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else
return false;
}
//走到这cur就是要插入的位置
//cur要连接parent,parent也要连接cur---判断靠kv的大小
cur = new Node(kv);
if (parent->_kv.first > cur->_kv.first)
{
parent->_left = cur;
cur->_parent = parent;
}
else
{
parent->_right = cur;
cur->_parent = parent;
}
while (parent && parent->_col == Red)
{
Node* grandparent = parent->_parent;
//parent分在grandparent左右
if (grandparent->_left == parent)
{
//关键是看uncle节点不存在/红色/黑色的情况
Node* uncle = grandparent->_right;
//1.uncle红
//parent和uncle变黑,grandparent变红
//grandparent变红需要往上判断
if (uncle && uncle->_col == Red)
{
grandparent->_col = Red;
parent->_col = uncle->_col = Black;
cur = grandparent;
parent = cur->_parent;
}
else //uncle不存在/黑色
{
//2.cur也是parent的左边,uncle不存在/黑色
//右旋grandparents,parent变黑,
if (cur == parent->_left)
{
_RotateR(grandparent);
parent->_col = Black;
grandparent->_col = Red;
}
//3.cur是parent的右边,uncle不存在/黑色
//左旋parent再右旋grandparents,cur变黑,grandparents变红
else
{
_RotateL(parent);
_RotateR(grandparent);
cur->_col = Black;
grandparent->_col = Red;
}
//抽象树的头被设置为黑色,对上面没有影响,所以不需要进行循环
break;
}
}
else
{
Node* uncle = grandparent->_left;
//1.uncle红
//parent和uncle变黑,grandparent变红
//grandparent变红需要往上判断
if (uncle && uncle->_col == Red)
{
grandparent->_col = Red;
parent->_col = uncle->_col = Black;
cur = grandparent;
parent = cur->_parent;
}
else //uncle不存在/黑色
{
//2.cur也是parent的右边,uncle不存在/黑色
//左旋grandparents,parent变黑,
if (cur == parent->_right)
{
_RotateL(grandparent);
parent->_col = Black;
grandparent->_col = Red;
}
//3.cur是parent的右边,uncle不存在/黑色
//右旋parent再左旋grandparents,cur变黑,grandparents变红
else
{
_RotateR(parent);
_RotateL(grandparent);
cur->_col = Black;
grandparent->_col = Red;
}
//抽象树的头被设置为黑色,对上面没有影响,所以不需要进行循环
break;
}
}
}
_root->_col = Black;
return true;
}
5.检查
inspect函数
1.空树返回true
2.根节点是否是红的
3.先遍历最左边,得到这个分支的黑色节点数作为参考
check函数
1.传入参考黑色节点个数
2.计数每一分支的黑色节点数,递归到底部,可对照节点数是否满足
3.递归遍历看看有没有连续的红色节点
private:
bool check(Node* root, size_t& reference, size_t num)
{
if (root == nullptr)
{
if (num != reference)
{
cout << "路径长度有问题" << endl;
return false;
}
return true;
}
if (root->_col == Red && root->_parent && root->_parent->_col == Red)
{
cout << "节点连续红色" << endl;
return false;
}
if (root->_col == Black)
num++;
return check(root->_left, reference, num) && check(root->_right, reference, num);
}
bool _Inspect(Node* root)
{
//空树也是红黑树
if (_root == nullptr)
return true;
//检测根节点是否为黑色
if (_root->_col != Black)
{
cout << "根节点是红色的" << endl;
return false;
}
size_t leftNum = 0;
Node* cur = _root;
while (cur)
{
if (cur->_col == Black)
leftNum++;
cur = cur->_left;
}
//检测所有路径黑色节点的数量是否一样
//检测相邻节点是不是都是红色的
return check(_root, leftNum, 0);
}
3.代码实现
#pragma once
#include<iostream>
#include<assert.h>
#include <stdlib.h>
#include<time.h>
using namespace std;
enum Color
{
Black,
Red,
};
template<class K, class V>
struct BRTreeNode
{
pair<K, V> _kv;
BRTreeNode* _left;
BRTreeNode* _right;
BRTreeNode* _parent;
Color _col;
BRTreeNode(const pair<K, V>& kv)
:_kv(kv)
, _left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _col(Red)
{}
};
template<class K, class V>
class BRTree
{
public:
typedef BRTreeNode<K, V> Node;
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
_root->_col = Black;
return true;
}
//父子节点确定插入的位置
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else
return false;
}
//走到这cur就是要插入的位置
//cur要连接parent,parent也要连接cur---判断靠kv的大小
cur = new Node(kv);
if (parent->_kv.first > cur->_kv.first)
{
parent->_left = cur;
cur->_parent = parent;
}
else
{
parent->_right = cur;
cur->_parent = parent;
}
while (parent && parent->_col == Red)
{
Node* grandparent = parent->_parent;
//parent分在grandparent左右
if (grandparent->_left == parent)
{
//关键是看uncle节点不存在/红色/黑色的情况
Node* uncle = grandparent->_right;
//1.uncle红
//parent和uncle变黑,grandparent变红
//grandparent变红需要往上判断
if (uncle && uncle->_col == Red)
{
grandparent->_col = Red;
parent->_col = uncle->_col = Black;
cur = grandparent;
parent = cur->_parent;
}
else //uncle不存在/黑色
{
//2.cur也是parent的左边,uncle不存在/黑色
//右旋grandparents,parent变黑,
if (cur == parent->_left)
{
_RotateR(grandparent);
parent->_col = Black;
grandparent->_col = Red;
}
//3.cur是parent的右边,uncle不存在/黑色
//左旋parent再右旋grandparents,cur变黑,grandparents变红
else
{
_RotateL(parent);
_RotateR(grandparent);
cur->_col = Black;
grandparent->_col = Red;
}
//抽象树的头被设置为黑色,对上面没有影响,所以不需要进行循环
break;
}
}
else
{
Node* uncle = grandparent->_left;
//1.uncle红
//parent和uncle变黑,grandparent变红
//grandparent变红需要往上判断
if (uncle && uncle->_col == Red)
{
grandparent->_col = Red;
parent->_col = uncle->_col = Black;
cur = grandparent;
parent = cur->_parent;
}
else //uncle不存在/黑色
{
//2.cur也是parent的右边,uncle不存在/黑色
//左旋grandparents,parent变黑,
if (cur == parent->_right)
{
_RotateL(grandparent);
parent->_col = Black;
grandparent->_col = Red;
}
//3.cur是parent的右边,uncle不存在/黑色
//右旋parent再左旋grandparents,cur变黑,grandparents变红
else
{
_RotateR(parent);
_RotateL(grandparent);
cur->_col = Black;
grandparent->_col = Red;
}
//抽象树的头被设置为黑色,对上面没有影响,所以不需要进行循环
break;
}
}
}
_root->_col = Black;
return true;
}
void Print()
{
_Print(_root);
cout << endl;
}
bool Inspect()
{
return _Inspect(_root);
}
private:
bool check(Node* root, size_t& reference, size_t num)
{
if (root == nullptr)
{
if (num != reference)
{
cout << "路径长度有问题" << endl;
return false;
}
return true;
}
if (root->_col == Red && root->_parent && root->_parent->_col == Red)
{
cout << "节点连续红色" << endl;
return false;
}
if (root->_col == Black)
num++;
return check(root->_left, reference, num) && check(root->_right, reference, num);
}
bool _Inspect(Node* root)
{
//空树也是红黑树
if (_root == nullptr)
return true;
//检测根节点是否为黑色
if (_root->_col != Black)
{
cout << "根节点是红色的" << endl;
return false;
}
size_t leftNum = 0;
Node* cur = _root;
while (cur)
{
if (cur->_col == Black)
leftNum++;
cur = cur->_left;
}
//检测所有路径黑色节点的数量是否一样
//检测相邻节点是不是都是红色的
return check(_root, leftNum, 0);
}
void _Print(Node*& cur)
{
if (cur == nullptr)
return;
_Print(cur->_left);
cout << cur->_kv.first << " ";
_Print(cur->_right);
}
void _RotateL(Node*& parent)
{
Node* pparent = parent->_parent;
Node* SubR = parent->_right;
Node* SubRL = SubR->_left;
if (pparent == nullptr)
{
_root = SubR;
SubR->_parent = nullptr;
}
else
{
if (pparent->_left == parent)
pparent->_left = SubR;
else
pparent->_right = SubR;
SubR->_parent = pparent;
}
parent->_parent = SubR;
SubR->_left = parent;
parent->_right = SubRL;
if (SubRL != nullptr)
SubRL->_parent = parent;
}
void _RotateR(Node*& parent)
{
Node* pparent = parent->_parent;
Node* SubL = parent->_left;
Node* SubLR = SubL->_right;
if (pparent == nullptr)
{
_root = SubL;
SubL->_parent = nullptr;
}
else
{
if (pparent->_left == parent)
pparent->_left = SubL;
else
pparent->_right = SubL;
SubL->_parent = pparent;
}
parent->_parent = SubL;
SubL->_right = parent;
parent->_left = SubLR;
if (SubLR != nullptr)
SubLR->_parent = parent;
}
Node* _root = nullptr;
};