高并发高吞吐IO秘密武器——epoll池化技术

news2024/11/15 10:25:14

1、epoll函数详解

epoll是Linux特有的IO复用函数,使用一组函数来完成任务,而不是单个函数。

epoll把用户关心的文件描述符上的事件放在内核的一个事件表中,不需要像select、poll那样每次调用都要重复传入文件描述符集或事件集。

epoll需要使用一个额外的文件描述符,来唯一标识内核中的时间表,由epoll_create创建。

函数原型

    #include <sys/epoll.h>
 
    int epoll_create(int size);
    int epoll_create1(int flags);
 
    int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
 
    int epoll_wait(int epfd, struct epoll_event *events,
                int maxevents, int timeout);
    int epoll_pwait(int epfd, struct epoll_event *events,
                int maxevents, int timeout,
                const sigset_t *sigmask);
  • epoll_create:创建一个epoll实例,size参数给内核一个提示,标识事件表的大小。函数返回的文件描述符将作用其他所有epoll系统调用的第一个参数,以指定要访问的内核事件表。
  • epoll_ctl:操作文件描述符。fd表示要操作的文件描述符,op指定操作类型,event指定事件。
  • epoll_wait:在一段超时时间内等待一组文件描述符上的事件。如果监测到事件,就将所有就绪的事件从内核事件表(epfd参数指定)中复制到第二个参数events指向的数组中。因为events数组只用于输出epoll_wait监测到的就绪事件,而不像select、poll那样就用于传入用户注册的事件,又用于输出内核检测到的就绪事件。这样极大提高了应用程序索引就绪文件描述符的效率。

函数返回

特别注意epoll_wait函数成功时返回就绪的文件描述符总数。select和poll返回文件描述符总数。

以寻找已经就绪的文件描述符,举个例子如下:

epoll_wait只需要遍历返回的文件描述符,但是poll和select需要遍历所有文件描述符

//  poll
int ret = poll(fds, MAX_EVENT_NUMBER, -1);
// 必须遍历所有已注册的文件描述符
for (int i = 0; i < MAX_EVENT_NUMBER; i++) {
    if (fds[i].revents & POLLIN) {
        int sockfd = fds[i].fd;
    }
}
 
// epoll_wait
int ret = epoll_wait(epollfd, events, MAX_EVENT_NUMBER, -1);
// 仅需要遍历就绪的ret个文件描述符
for (int i = 0; i < ret; i++) {
    int sockfd = events[i].data.fd;
}

LT水平触发模式和ET边沿触发模式

epoll监控多个文件描述符的I/O事件。epoll支持边缘触发(edge trigger,ET)或水平触发(level trigger,LT),通过epoll_wait等待I/O事件,如果当前没有可用的事件则阻塞调用线程。

select和poll只支持LT工作模式,epoll的默认的工作模式是LT模式。

水平触发:

  • 当epoll_wait检测到其上有事件发生并将此事件通知应用程序后,应用程序可以不立即处理此事件。这样应用程序下一次调用epoll_wait的时候,epoll_wait还会再次向应用程序通告此事件,直到事件被处理。

边沿触发:

  • 当epoll_wait检测到其上有事件发生并将此事件通知应用程序后,应用程序必须立即处理此事件,后续的epoll_wait调用将不再向应用程序通知这一事件。

所以,边沿触发模式很大程度上降低了同一个epoll事件被重复触发的次数,所以效率更高。

2、三组IO复用函数对比

1. 用户态将文件描述符传入内核的方式

  • select:创建3个文件描述符集并拷贝到内核中,分别监听读、写、异常动作。这里受到单个进程可以打开的fd数量限制,默认是1024。
  • poll:将传入的struct pollfd结构体数组拷贝到内核中进行监听。
  • epoll:执行epoll_create会在内核的高速cache区中建立一颗红黑树以及就绪链表(该链表存储已经就绪的文件描述符)。接着用户执行的epoll_ctl函数添加文件描述符会在红黑树上增加相应的结点。

2. 内核态检测文件描述符读写状态的方式

  • select:采用轮询方式,遍历所有fd,最后返回一个描述符读写操作是否就绪的mask掩码,根据这个掩码给fd_set赋值。
  • poll:同样采用轮询方式,查询每个fd的状态,如果就绪则在等待队列中加入一项并继续遍历。
  • epoll:采用回调机制。在执行epoll_ctl的add操作时,不仅将文件描述符放到红黑树上,而且也注册了回调函数,内核在检测到某文件描述符可读/可写时会调用回调函数,该回调函数将文件描述符放在就绪链表中。

3. 找到就绪的文件描述符并传递给用户态的方式

  • select:将之前传入的fd_set拷贝传出到用户态并返回就绪的文件描述符总数。用户态并不知道是哪些文件描述符处于就绪态,需要遍历来判断。
  • poll:将之前传入的fd数组拷贝传出用户态并返回就绪的文件描述符总数。用户态并不知道是哪些文件描述符处于就绪态,需要遍历来判断。
  • epoll:epoll_wait只用观察就绪链表中有无数据即可,最后将链表的数据返回给数组并返回就绪的数量。内核将就绪的文件描述符放在传入的数组中,所以只用遍历依次处理即可。

4. 重复监听的处理方式

  • select:将新的监听文件描述符集合拷贝传入内核中,继续以上步骤。
  • poll:将新的struct pollfd结构体数组拷贝传入内核中,继续以上步骤。
  • epoll:无需重新构建红黑树,直接沿用已存在的即可。

相关视频推荐

6种epoll的设计方法(单线程epoll、多线程epoll、多进程epoll)及每种epoll的应用场景 

手把手带你实现epoll组件,为tcp并发的实现epoll

3种红黑树的使用场景,每一个场景都很经典

免费学习地址:c/c++ linux服务器开发/后台架构师

需要C/C++ Linux服务器架构师学习资料加群812855908(资料包括C/C++,Linux,golang技术,内核,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等)

3、epoll池化技术使用步骤

(1)epoll_create创建epoll池

int epoll_create(int size);

size标识内核事件表的大小,返回的文件描述符将作用于其他所有epoll系统调用的第一个参数。

加上异常处理,一般的写法:

epollfd = epoll_create(1024);
if (epollfd == -1) {
    perror("epoll_create");
    exit(EXIT_FAILURE);
}

这里epollfd来唯一标识epoll池,等于-1时表示出现了异常。

(2)在epoll池中添加fd

int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);

epfd就是刚才创建epoll池的fd,op代表操作类型,常见三种操作类型如下:

  1. EPOLL_CTL_ADD:在事件表中注册fd上的事件
  2. EPOLL_CTL_MOD:修改fd上的注册事件
  3. EPOLL_CTL_DEL:删除fd上的注册事件

所以我们这里使用EPOLL_CTL_ADD在epoll池中添加注册事件:

if (epoll_ctl(epollfd, EPOLL_CTL_ADD, 11, &ev) == -1) {
    perror("epoll_ctl: listen_sock");
    exit(EXIT_FAILURE);
}

(3)返回就绪文件描述符

主要通过epoll_wait来实现:

 int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout);

在一段超时时间内等待一组文件描述符上的事件。如果监测到事件,就将所有就绪的事件从内核事件表(epfd参数指定)中复制到第二个参数events指向的数组中。因为events数组只用于输出epoll_wait监测到的就绪事件,而不像select、poll那样就用于传入用户注册的事件,又用于输出内核检测到的就绪事件。这样极大提高了应用程序索引就绪文件描述符的效率。

举个例子:

int ret = epoll_wait(epollfd, events, MAX_EVENT_NUM, -1);
for (int i = 0; i < ret; i++) {
    int sockfd = events[i].data.fd;
    // sockfd肯定已经就绪,直接处理
}

4、隐藏在epoll高效背后的秘密:红黑树和双向链表

  • 为什么poll、select需要遍历所有已注册的文件描述符才能找到就绪fd,但是epoll不需要?
  • 为什么在epoll池中fd频繁增删查改的过程中保持高效?
  • 为什么epoll能通过事件通知的形式,做到最高效的运行?

要弄懂这些问题,需要深入了解epoll背后的数据结构。

红黑树

Linux 内核对于 epoll 池的内部实现就是用红黑树的结构体来管理这些注册进程来的句柄 fd。红黑树是一种平衡二叉树,时间复杂度为 O(log n),就算这个池子就算不断的增删改,也能保持非常稳定的查找性能。

关于红黑树为什么可以实现高效的增删查改,就是另一个故事了,可以简单地概括如下:

(1)每个节点或者是黑色,或者是红色。

(2)根节点是黑色。

(3)每个叶子节点(NIL)是黑色。 [注意:这里叶子节点,是指为空(NIL或NULL)的叶子节点!]

(4)如果一个节点是红色的,则它的子节点必须是黑色的。

(5)从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。

双向链表

epoll_ctl内部实现中,通过poll回调,poll 机制让上层能直接告诉底层,如果这个 fd 一旦读写就绪了,请底层硬件(比如网卡)回调的时候自动把这个 fd 相关的结构体放到指定队列中,并且唤醒操作系统。

poll内部挂了个钩子,设置了唤醒的回调路径。这个路径存放在哪里?放到一个特定的队列(就绪队列,ready list),这个就绪队列其实是一个双向链表。放到就绪队列中,就可以唤醒epoll啦!

放到就绪队列中的epoll结构体的名字叫做epitem,每个注册到 epoll 池的 fd 都会对应一个。

 

5、epoll天生为网络编程而生

为什么说为网络编程而生呢?因为文件系统不能使用epoll

  1. ext2,ext4,xfs 等这种真正的文件系统的 fd ,无法使用 epoll 管理;
  2. socket fd,eventfd,timerfd 这些实现了 poll 调用的可以放到 epoll 池进行管理;

6、代码实例

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/epoll.h>
#include <errno.h>
 
#define MAXEVENTS 64
 
static int make_socket_non_blocking (int sfd)
{
  int flags, s;
 
  flags = fcntl (sfd, F_GETFL, 0);
  if (flags == -1)
    {
      perror ("fcntl");
      return -1;
    }
 
  flags |= O_NONBLOCK;
  s = fcntl (sfd, F_SETFL, flags);
  if (s == -1)
    {
      perror ("fcntl");
      return -1;
    }
 
  return 0;
}
 
static int create_and_bind (char *port)
{
  struct addrinfo hints;
  struct addrinfo *result, *rp;
  int s, sfd;
 
  memset (&hints, 0, sizeof (struct addrinfo));
  hints.ai_family = AF_UNSPEC;     /* Return IPv4 and IPv6 choices */
  hints.ai_socktype = SOCK_STREAM; /* We want a TCP socket */
  hints.ai_flags = AI_PASSIVE;     /* All interfaces */
 
  s = getaddrinfo (NULL, port, &hints, &result);
  if (s != 0)
    {
      fprintf (stderr, "getaddrinfo: %s\n", gai_strerror (s));
      return -1;
    }
 
  for (rp = result; rp != NULL; rp = rp->ai_next)
    {
      sfd = socket (rp->ai_family, rp->ai_socktype, rp->ai_protocol);
      if (sfd == -1)
        continue;
 
      s = bind (sfd, rp->ai_addr, rp->ai_addrlen);
      if (s == 0)
        {
          /* We managed to bind successfully! */
          break;
        }
 
      close (sfd);
    }
 
  if (rp == NULL)
    {
      fprintf (stderr, "Could not bind\n");
      return -1;
    }
 
  freeaddrinfo (result);
 
  return sfd;
}
 
int main (int argc, char *argv[])
{
  int sfd, s;
  int efd;
  struct epoll_event event;
  struct epoll_event *events;
 
  if (argc != 2)
    {
      fprintf (stderr, "Usage: %s [port]\n", argv[0]);
      exit (EXIT_FAILURE);
    }
 
  sfd = create_and_bind (argv[1]);
  if (sfd == -1)
    abort ();
 
  s = make_socket_non_blocking (sfd);
  if (s == -1)
    abort ();
 
  s = listen (sfd, SOMAXCONN);
  if (s == -1)
    {
      perror ("listen");
      abort ();
    }
 
  efd = epoll_create1 (0);
  if (efd == -1)
    {
      perror ("epoll_create");
      abort ();
    }
 
  event.data.fd = sfd;
  event.events = EPOLLIN | EPOLLET;
  s = epoll_ctl (efd, EPOLL_CTL_ADD, sfd, &event);
  if (s == -1)
    {
      perror ("epoll_ctl");
      abort ();
    }
 
  /* Buffer where events are returned */
  events = calloc (MAXEVENTS, sizeof event);
 
  /* The event loop */
  while (1)
    {
      int n, i;
 
      n = epoll_wait (efd, events, MAXEVENTS, -1);
      for (i = 0; i < n; i++)
	{
	  if ((events[i].events & EPOLLERR) ||
              (events[i].events & EPOLLHUP) ||
              (!(events[i].events & EPOLLIN)))
	    {
              /* An error has occured on this fd, or the socket is not
                 ready for reading (why were we notified then?) */
	      fprintf (stderr, "epoll error\n");
	      close (events[i].data.fd);
	      continue;
	    }
 
	  else if (sfd == events[i].data.fd)
	    {
              /* We have a notification on the listening socket, which
                 means one or more incoming connections. */
              while (1)
                {
                  struct sockaddr in_addr;
                  socklen_t in_len;
                  int infd;
                  char hbuf[NI_MAXHOST], sbuf[NI_MAXSERV];
 
                  in_len = sizeof in_addr;
                  infd = accept (sfd, &in_addr, &in_len);
                  if (infd == -1)
                    {
                      if ((errno == EAGAIN) ||
                          (errno == EWOULDBLOCK))
                        {
                          /* We have processed all incoming
                             connections. */
                          break;
                        }
                      else
                        {
                          perror ("accept");
                          break;
                        }
                    }
 
                  s = getnameinfo (&in_addr, in_len,
                                   hbuf, sizeof hbuf,
                                   sbuf, sizeof sbuf,
                                   NI_NUMERICHOST | NI_NUMERICSERV);
                  if (s == 0)
                    {
                      printf("Accepted connection on descriptor %d "
                             "(host=%s, port=%s)\n", infd, hbuf, sbuf);
                    }
 
                  /* Make the incoming socket non-blocking and add it to the
                     list of fds to monitor. */
                  s = make_socket_non_blocking (infd);
                  if (s == -1)
                    abort ();
 
                  event.data.fd = infd;
                  event.events = EPOLLIN | EPOLLET;
                  s = epoll_ctl (efd, EPOLL_CTL_ADD, infd, &event);
                  if (s == -1)
                    {
                      perror ("epoll_ctl");
                      abort ();
                    }
                }
              continue;
            }
          else
            {
              /* We have data on the fd waiting to be read. Read and
                 display it. We must read whatever data is available
                 completely, as we are running in edge-triggered mode
                 and won't get a notification again for the same
                 data. */
              int done = 0;
 
              while (1)
                {
                  ssize_t count;
                  char buf[512];
 
                  count = read (events[i].data.fd, buf, sizeof buf);
                  if (count == -1)
                    {
                      /* If errno == EAGAIN, that means we have read all
                         data. So go back to the main loop. */
                      if (errno != EAGAIN)
                        {
                          perror ("read");
                          done = 1;
                        }
                      break;
                    }
                  else if (count == 0)
                    {
                      /* End of file. The remote has closed the
                         connection. */
                      done = 1;
                      break;
                    }
 
                  /* Write the buffer to standard output */
                  s = write (1, buf, count);
                  if (s == -1)
                    {
                      perror ("write");
                      abort ();
                    }
                }
 
              if (done)
                {
                  printf ("Closed connection on descriptor %d\n",
                          events[i].data.fd);
 
                  /* Closing the descriptor will make epoll remove it
                     from the set of descriptors which are monitored. */
                  close (events[i].data.fd);
                }
            }
        }
    }
 
  free (events);
 
  close (sfd);
 
  return EXIT_SUCCESS;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/449195.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

闲人闲谈PS之四十一——重新认识PS模块

惯例闲话&#xff1a;4月份参加了SAP咨询大师乐老师组织的公司间业务培训&#xff0c;印象极为深刻&#xff0c;乐老师从三权分立的角度同大家分析了公司间业务交易对象–库存的属地权、管理权、所有权&#xff0c;通过这种全新的视角&#xff0c;把复杂难以理解的公司交易用最…

万字复盘Vue2相关知识(适合学过但忘了然而需要上手的朋友)

目录 前言一&#xff0c;Vue2项目的创建及基本配置1.1 用脚手架创建项目1.2 项目结构1.3 入口文件main.js1.4 组件配置1.4 运行项目 二&#xff0c;Vue的基础知识2.1 数据显示2.2 数据绑定2.3 事件处理2.4 循环遍历2.5 判断语法2.6 计算属性2.7 监视属性 三&#xff0c;重要的生…

python 资料

算法和设计模式 Python实现算法和设计模式 algorithms - Python的一个算法模块. PyPattyrn - 一个用于实现常见设计模式的简单而有效的库. python-patterns - Python中设计模式的集合. sortedcontainers - 快速&#xff0c;纯Python的SortedList&#xff0c;SortedDict和So…

第1章:算法基础【AcWing】

文章目录 快速排序题目描述输入格式输出格式样例样例输入样例输出 提示 算法&#xff08;分治&#xff0c;双指针&#xff09; O ( n l o g n ) O(nlogn) O(nlogn)示例代码注意事项时间复杂度稳定性 归并排序题目描述算法&#xff08;分治&#xff0c;双指针&#xff09; O (…

数据库系统-索引

一、什么是索引 字典中的目录&#xff0c;就是生活中的索引 **索引&#xff1a;**定义在存储表基Table础之上&#xff0c;有助于无需检查所有记录而快速定位所需记录的一种辅助存储结构&#xff0c;由一些列存储在磁盘上的索引项index etries组成&#xff0c;每一个索引项又由…

诊断报文和通讯报文有什么区别?

&#x1f345; 我是蚂蚁小兵&#xff0c;专注于车载诊断领域&#xff0c;尤其擅长于对CANoe工具的使用&#x1f345; 寻找组织 &#xff0c;答疑解惑&#xff0c;摸鱼聊天&#xff0c;博客源码&#xff0c;点击加入&#x1f449;【相亲相爱一家人】&#x1f345; 玩转CANoe&…

YOLOv5+双目实现三维跟踪(python)

YOLOv5双目实现三维跟踪&#xff08;python&#xff09; 1. 目标跟踪2. 测距模块2.1 测距原理2.2 添加测距 3. 细节修改&#xff08;可忽略&#xff09;4. 实验效果 相关链接 1. YOLOV5 双目测距&#xff08;python&#xff09; 2. YOLOV7 双目测距&#xff08;python&#x…

【红队APT】钓鱼篇Office-CVE漏洞RLO隐藏压缩包释放免杀打包捆绑

文章目录 文件后缀-钓鱼伪装-RLO压缩文件-自解压-释放执行Office套件-CVE漏洞-MSF&CSMicrosoft MSDT CVE-2022-30190 代码执行Microsoft MSHTML CVE-2021-40444 远程代码执行CVE-2017-11882 文件后缀-钓鱼伪装-RLO 经过免杀后的exe程序(xgpj.exe)&#xff0c;进行重命名&a…

float,flex和grid布局

页面布局往往会影响着整体的结构与项目的样式&#xff0c;通常我们用的布局方式有三种&#xff1a;float,flex,grid 1.float或position布局 1.1概念 首先对于一个页面来说&#xff0c;有浮动流&#xff0c;文档流&#xff0c;文本流这几种模式&#xff0c;而float布局则是脱离…

接口文档设计的12个注意点

前言 我们做后端开发的,经常需要定义接口文档。 最近在做接口文档评审的时候&#xff0c;发现一个小伙伴定义的出参是个枚举值&#xff0c;但是接口文档没有给出对应具体的枚举值。其实&#xff0c;如何写好接口文档&#xff0c;真的很重要。今天给你带来接口文档设计的12个注…

Camera Tuning - MTK pipeline

MTK ISP Pipeline 模块介绍&#xff1a; BPC&#xff1a;坏点矫正 OBC&#xff1a;OB矫正 FUS&#xff1a;此节点处理后&#xff0c;支持视频、预览HDR Digital Gain&#xff1a; 1、LSC&#xff1a;shading矫正 2、WB&#xff1a;白平衡矫正&#xff08;此步处理后&#xff0…

数字设计笔试Verilog手撕代码 - 累加器

前言 本系列整理关于数字设计的笔试或面试的设计问题&#xff0c;手撕代码继续撕&#xff0c;今天撕一个百度昆仑笔试题的累加器设计。 设计需求 题目来源&#xff1a; 【数字IC/FPGA】百度昆仑芯手撕代码–累加器 已知一个加法器IP&#xff0c;其功能是计算两个数的和&am…

虚幻图文笔记:如何清理Character Creator角色的垃圾数据

书接上文《虚幻图文笔记&#xff1a;Character Creator 4角色通过AutoSetup For Unreal Engine插件导入UE5.1的过程笔记》 在一个项目中我按照上文的步骤导入UE5&#xff0c;但是产生了一些莫名其妙的文件&#xff0c;下面还原一下发现和解决问题的过程。 1. 使用Character Cr…

【C++入门必备知识】

【C入门必备知识】 ①.【命名空间】1.命名空间定义Ⅰ.正常定义命名空间Ⅱ.嵌套定义命名空间Ⅲ.合并命名空间 2.命名空间的使用Ⅰ.命名空间名称及域作用限定符Ⅱ.using成员引入Ⅲ.using namespace名称全部引入 3.注意事项Ⅰ.概念1.全缺省参数2.半缺省参数3.使用规则4.应用场景再…

Baumer工业相机堡盟工业相机如何通过BGAPISDK的软触发实现两相机的同步采集(C#)

Baumer工业相机堡盟工业相机如何通过BGAPISDK的软触发实现两相机的同步采集&#xff08;C#&#xff09; Baumer工业相机Baumer工业相机的高速同步采集的技术背景Baumer工业相机通过BGAPI SDK在回调函数里同步保存图像工业相机在回调函数BufferEvent保存工业相机使用软触发进行同…

#Chrome扩展程序开发教程--04:权限申请

#Chrome扩展程序开发教程--04&#xff1a;权限申请 引言1、基本介绍2、权限相关属性2.1、permissions2.2、optional_permissions2.3、host_permissions2.4、optional_host_permissions 3、申请权限4、检查权限5、移除权限 引言 本系列博客旨在带来最新的Chrome扩展程序开发入门…

C语言函数大全-- m 开头的函数

C语言函数大全 本篇介绍C语言函数大全-- m 开头的函数 1. malloc 1.1 函数说明 函数声明函数功能void *malloc(size_t size);用于动态分配内存 参数&#xff1a; size &#xff1a; 需要分配的内存大小&#xff08;以字节为单位&#xff09; 返回值&#xff1a; 如果分配成…

【Spring】三大依赖注入(@Autowired,Setter,构造方法)

目录 一、属性注入&#xff08;Autowired&#xff09; 1.1 优点分析 1.2 缺点分析 1.2.1 无法实现final修饰的变量注入。 1.2.2 兼容性不好 1.2.3 &#xff08;可能违背&#xff09;设计原则问题 1.2.4 代码举例&#xff1a; 1.2.5 出现循环依赖该怎么办&#xff1f; 二…

自然语言模型的哲学小谈

近期&#xff0c;以chatGPT为代表的大语言模型表现非常惊艳。“In Context Learning”、“Instruct”1&#xff0c;以及推理能力&#xff0c;很难不让我们期待未来人工智能的发展&#xff0c;同时冷静思考一下为什么自然语言模型能够取得巨大进步。 文章目录 1 放空大脑从0开始…

Ngiinx反向代理和负载均衡

系列文章目录 目录 系列文章目录一、Nginx的反向代理1.代理含义2.反向代理配置模块 二、1.动静分离2.负载均衡实验 总结 一、Nginx的反向代理 1.代理含义 正向代理 正向代理&#xff0c;指的是通过代理服务器 代理浏览器/客户端去重定向请求访问到目标服务器 的一种代理服务…