KL散度和交叉熵的对比介绍

news2024/11/15 3:58:38

KL散度(Kullback-Leibler Divergence)和交叉熵(Cross Entropy)是在机器学习中广泛使用的概念。这两者都用于比较两个概率分布之间的相似性,但在一些方面,它们也有所不同。本文将对KL散度和交叉熵的详细解释和比较。

KL散度和交叉熵

KL散度,也称为相对熵(Relative Entropy),是用来衡量两个概率分布之间的差异的一种度量方式。它衡量的是当用一个分布Q来拟合真实分布P时所需要的额外信息的平均量。KL散度的公式如下:

x是概率分布中的一个可能的事件或状态。P(x)和Q(x)分别表示真实概率分布和模型预测的概率分布中事件x的概率。

KL散度具有以下性质:

  • KL散度是非负的,即 KLD(P||Q) >= 0,当且仅当P和Q是完全相同的分布时等号成立。
  • KL散度不满足交换律,即 KLD(P||Q) != KLD(Q||P)。
  • KL散度通常不是对称的,即 KLD(P||Q) != KLD(Q||P)。
  • KL散度不是度量,因为它不具有对称性和三角不等式。

在机器学习中,KL散度通常用于比较两个概率分布之间的差异,例如在无监督学习中用于评估生成模型的性能。

交叉熵是另一种比较两个概率分布之间的相似性的方法。它的公式如下:

x是概率分布中的一个可能的事件或状态。P(x)和Q(x)分别表示真实概率分布和模型预测的概率分布中事件x的概率。交叉熵衡量了模型预测的概率分布与真实概率分布之间的差异,即模型在预测上的不确定性与真实情况的不确定性之间的差距。

与KL散度不同,交叉熵具有以下性质:

  • 交叉熵是非负的,即CE(P, Q) >= 0,当且仅当P和Q是完全相同的分布时等号成立。
  • 交叉熵满足交换律,即CE(P, Q) = CE(Q, P)。
  • 交叉熵是对称的,即CE(P, Q) = CE(Q, P)。
  • 交叉熵不是度量,因为它不具有三角不等式。

在机器学习中,交叉熵通常用于衡量模型预测和真实标签之间的差异。例如,在分类任务中,交叉熵被用作损失函数,以衡量模型预测的类别分布和真实标签之间的差。

KL散度与交叉熵的关系

L散度和交叉熵有一定的联系。在概率论中,KL散度可以被定义为两个概率分布之间的交叉熵与真实分布的熵的差值。具体地说,KL散度的公式如下:

H(P, Q)表示P和Q的交叉熵,H§表示P的熵。可以看到,KL散度包含了交叉熵和熵的概念,因此它们之间有着密切的联系。

KL散度与交叉熵的应用

交叉熵通常用于监督学习任务中,如分类和回归等。在这些任务中,我们有一组输入样本和相应的标签。我们希望训练一个模型,使得模型能够将输入样本映射到正确的标签上。

在这种情况下,我们可以使用交叉熵作为损失函数。假设我们有一个模型预测的输出分布为p,真实标签的分布为q。那么交叉熵的公式如下:

i表示可能的类别或事件,p_i和q_i分别表示真实概率分布和模型预测的概率分布中类别i的概率。

KL散度通常用于无监督学习任务中,如聚类、降维和生成模型等。在这些任务中,我们没有相应的标签信息,因此无法使用交叉熵来评估模型的性能,所以需要一种方法来衡量模型预测的分布和真实分布之间的差异,这时就可以使用KL散度来衡量模型预测的分布和真实分布之间的差异。KL散度的公式如下:

i表示概率分布中的一个可能的事件或状态。p_i和q_i分别表示真实概率分布和模型预测的概率分布中事件i的概率。KL散度衡量了模型预测的概率分布与真实概率分布之间的差异,即模型在预测上的不确定性与真实情况的不确定性之间的差距。

一般情况下:交叉熵通常用于监督学习任务中,KL散度通常用于无监督学习任务中。当我们有相应的标签信息时,应该使用交叉熵来评估模型的性能;当我们没有相应的标签信息时,使用KL散度可以衡量模型预测的分布和真实分布之间的差异。

总结

在本文中,我们介绍了KL散度和交叉熵这两个概念,并比较了它们之间的异同。KL散度用于比较两个概率分布之间的差异,而交叉熵用于衡量模型预测和真实标签之间的差异。尽管它们有一定的联系,但它们在使用和应用上还是有所区别。在机器学习中,KL散度和交叉熵都有着广泛的应用,可以用来评估模型的性能和更新模型参数。

https://avoid.overfit.cn/post/030de9dfd01e45e5ba23bf1a9b36c70b

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/447241.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

学系统集成项目管理工程师(中项)系列03_职业道德规范

1. 职业道德 1.1. 涵盖了从业人员与服务对象、职业与职工、职业与职业之间的关系 1.2. 是所有从业人员在职业活动中应该遵循的行为准则 1.3. 包括爱岗敬业、诚实守信、办事公道、服务群众和奉献社会 2. 道德 2.1. 通常与法律相对应,具有非强制性 2.2. 指人们依…

《花雕学AI》26:多维度了解ChatGPT思维链提示的原理、方法、使用和发展的22个问题

早上5点起床,没有去打羽毛球,打开电脑,漫无边际的浏览,偶然发现了一个提法:ChatGPT思维链提示。于是,我使用与ChatGPT同源技术的新Bing引擎(GPT-4),来进行搜索与了解相关…

基于在线优化的快速模型预测控制仿真Fast_MPC(Matlab代码实现)

目录 💥1 概述 📚2 运行结果 🎉3 参考文献 👨‍💻4 Matlab代码 💥1 概述 ​模型预测控制(Model Predictive Control,MPC)是一种基于在线计算的控制优化算法,能够统一处理带约束的多参数优化控制问题。…

ESP8266 最简单的OTA升级模式

最近在做一个项目时有OTA的需求,之前是通过arduino自带的ota模式,虽说也可以用,但操作比较麻烦,昨晚在网上搜索相关教程,发现了使用巴法云来实现ota的功能,现分享如下 1、首先要让你的设备联网 2、注册巴法…

jsp基础语法

前提 安装jdk参考 下载tomcat解压&#xff0c;运行tomcat不报错即可 第一个jsp程序 切换到webapps下ROOT文件夹下&#xff0c;将除了WEB-INF文件外的全部内容删除&#xff0c;新建index.jsp index.jsp内容如下 <!DOCTYPE html> <html lang"zh-CN"&g…

React Proxy 详细流程与配置方式(webpack、setupProxy.js、package.json)

一、 package.json 配置方式 全部以 GET 请求为例&#xff0c;每次修改配置后&#xff0c;重启项目&#xff0c;否则不生效。 访问 http://127.0.0.1:6000/api/user/list 接口为例检查自己脚手架版本 $ create-react-app -V若脚手架版本在 2.0 以下&#xff0c;可以使用对象类型…

【C++】deque的实现原理简单介绍

前言 deque被称为双端队列&#xff0c;它的出现主要是为了结合vector和list的优点并减小它们的缺点&#xff0c;实际上deque确实结合了vector和list的优点减小了它们的缺点&#xff0c;但是它的结合也让它自己的优点没有原始的vector和list那么极致&#xff0c;导致deque变得很…

C++好难(1):C++的入门

目录 前言&#xff1a; C的历史&#xff1a; c的领域 1.C的关键字&#xff1a; 2.命名空间 2.1命名空间的定义&#xff1a; 1&#xff09;命名空间的普通定义&#xff1a; 2&#xff09;命名空间的嵌套定义&#xff1a; 3&#xff09;命名空间相同的处理&#xff1a; …

没有公网IP,自建网站如何让外网访问?

受创业潮影响&#xff0c;身边很多朋友都自己开公司创业了&#xff0c;作为一个IT行业从业者&#xff0c;我就莫名的开始忙起来了&#xff0c;因为掌握编程技术&#xff0c;朋友们经常找到我&#xff0c;让我帮他们做公司网站。但是存在一个无法回避的问题&#xff0c;就是我的…

0/1背包问题——从LeetCode题海中总结常见套路

目录 问题讨论 01背包问题公式 为什么状态压缩到一维时候需要逆序&#xff1f; 怎样求次数&#xff1f; 转化成最大和sum/2的01背包&#xff1a;LeetCode.416.分割等和子集 转化成最大和sum/2的01背包&#xff1a;LeetCode1049.最后一块石头的重量II LeetCode.494.目标和…

微软文字转语音不能试用了,分享三个方法给大家!

最近很多小伙伴告诉我&#xff0c;微软文字转语音不能在线试用了&#xff0c;这是因为微软关闭了官方的使用页面&#xff0c;所以现在不能直接使用微软的网页版进行文字转语音了。 那么我们还有没有更好的方法去“白嫖”微软的文字转语音呢&#xff1f; 答案是肯定的&#xf…

初识NoSQL(一文读懂)

最近参加了Oracle的数据库培训&#xff0c;对NoSQL非常好奇&#xff0c;总结一下关于NoSQL的认识。 NoSQL是Not Only SQL&#xff0c;并不是去除掉SQL&#xff0c;泛指非关系型的数据库。关系&#xff0c;指关系模型&#xff0c;具体指同一个对象在不同属性上的值 以及 不同对…

一个AK/SK泄露检测的实现思路

01、简介 在企业上云的过程中&#xff0c;AK/SK泄露导致的数据泄露事件屡见不鲜。在企业混合云架构下&#xff0c;公有云和私有云都存在大量的AccessKey&#xff0c;如何有效地检测可能的AK/SK泄露事件&#xff0c;一直困扰着企业的安全人员。 本文提供了一种比较容易实现的思路…

UART协议学习——异步全双工串行通信方式

文章目录 前言一、简介1、优点2、缺点 二、数据格式三、波特率1、定义2、波特率和采样频率 四、常见接口电平1、TTL电平2、RS232&#xff08;负逻辑&#xff09;3、RS485 前言 2023.4.22 世界地球日 一、简介 UART&#xff1a;Universal Asynchronous Receiver/Transmitter&a…

Albert-Z-Guo/Deep-Reinforcement-Stock-Trading

深加固股票交易 该项目打算在投资组合管理中利用深度强化学习。框架结构的灵感来自Q-Trader。代理人的奖励是在每个行动步骤评估的未实现净利润&#xff08;意味着股票仍在投资组合中且尚未兑现&#xff09;。对于每一步的不作为&#xff0c;投资组合中都会增加负惩罚&#xf…

USMART 函数错误解决方法

身为电子工程师&#xff0c;看了马斯克的星舰飞船&#xff0c;真是太帅了&#xff1b; 深知一个良好的测试环境对产品性能的影响&#xff0c;对工作效率的提升。 小资源MCU调试代码的工具USMART 使用起来。 移植的文章网上有很多&#xff0c;但是对移植过程中使用错误的文章…

mybatisPlus拦截器使用demo

概述 顾名思义&#xff0c;就是一个拦截器&#xff0c;和springmvc的拦截器&#xff0c;servlet的过滤器差不多&#xff0c;就是在执行前拦了一道&#xff0c;里面可以做一些自己的事情。 平时用的mybatisPlus较多&#xff0c;直接以com.baomidou.mybatisplus.extension.plug…

VUE中使用element-china-area-data

使用element-china-area-data的中国省市区级联数据编写城市选择器。以下为解决效果图&#xff1a; &#xff08;1&#xff09;安装 npm install element-china-area-data -S &#xff08;2&#xff09;引入 import { regionData, CodeToText, TextToCode } from ‘element-ch…

LDO系列--LDO并联扩容

1、不能简单并联&#xff08;无法电流均衡&#xff09; 两个LDO的内部的带隙基准源(参考电压)&#xff0c;FET的特性&#xff0c;以及误差放大器的噪声不同(如失调电压)&#xff0c;实际LDO输出的目标电压依旧是有差异的。 这就导致了&#xff0c;LDO-High的目标输出电压高一些…

STM32F103基于标准库+I2C SSD1306仿数码管RTC时钟显示

STM32F103基于标准库I2C SSD1306仿数码管RTC时钟显示 ✨申明&#xff1a;本文章仅发表在CSDN网站&#xff0c;任何其他网站&#xff0c;未注明来源&#xff0c;见此内容均为盗链和爬取。 &#x1f341;对于文中所提供的相关资源链接将作不定期更换。 &#x1f4fa;显示效果&a…