目录
💥1 概述
📚2 运行结果
🎉3 参考文献
👨💻4 Matlab代码
💥1 概述
模型预测控制(Model Predictive Control,MPC)是一种基于在线计算的控制优化算法,能够统一处理带约束的多参数优化控制问题。当被控对象结构和环境相对复杂时,模型预测控制需选择较大的预测时域和控制时域,因此大大增加了在线求解的计算时间,同时降低了控制效果。从现有的算法来看,模型预测控制通常只适用于采样时间较大、动态过程变化较慢的系统中。因此,研究快速模型预测控制算法具有一定的理论意义和应用价值。
📚2 运行结果
主函数部分代码:
% Testing FAST MPC class clear; clc; close all; addpath('Fast_MPC'); %% Parameters n = 8; % Dimension of state m = 5; % Dimension of control Q = eye(n); % State stage cost R = eye(m); % Control stage cost S = []; % State control coupled cost Qf = 50*eye(n); % Terminal state cost q = []; % Linear state cost r = []; % Linear control cost qf = []; % Terminal state cost Xmax = 10; % State upper limit Umax = 2; % Control upper limit xmin = -Xmax*ones(n,1); % State lower bound xmax = Xmax*ones(n,1); % State upper bound umin = -Umax*ones(m,1); % Cotrol lower bound umax = Umax*ones(m,1); % Control upper bound high_limit = 1; low_limit = 0; A = (high_limit-low_limit).*rand(n,n) + ones(n,n)*low_limit; % Random A (State transition) matrix B = (high_limit-low_limit).*rand(n,m) + ones(n,m)*low_limit; % Random B (Control matrix) matrix A = A./(max(abs(eig(A)))); % Spectral radius of A within 1 high_limit_w = 1; low_limit_w = 0; w = (high_limit_w-low_limit_w).*rand(n,1) + ones(n,1)*low_limit_w; % Random noise vector T = 10; % Horizon length x0 = rand(n,1); % Initial state (random) xf = 1*ones(n,1); % Terminal state test = Fast_MPC2(Q,R,S,Qf,q,r,qf,xmin,xmax,umin,umax,T,x0,... A,B,w,xf,[]); % Build class %% Solve % Native matlab solver tic; [x_opt_mat] = test.matlab_solve; % Solving using native matlab solver fmincon t_mat = toc; % Structured MPC full solve tic; [x_opt_full] = test.mpc_solve_full; % Solving structure problem as log barrier method with infeasible start newton t_full = toc; % Fixed log barrier method k=0.01 k_fix = 0.01; tic; [x_opt_log] = test.mpc_fixed_log(k_fix); % Fixed log(k) iteration method t_log = toc; % Fixed newton step = 5 n_fix = 5; tic; [x_opt_nw] = test.mpc_fixed_newton(n_fix); % Fixed newton steps(5) method t_nw = toc; % Fixed log barrier + fixed newton step tic; [x_opt_lgnw] = test.mpc_fixed_log_newton(n_fix,k_fix); t_lgnw = toc; fprintf('Matlab solver=%d sec\n',t_mat); fprintf('Infeasible start newton =%d sec\n',t_full); fprintf('Infeasible start newton with fixed k(%d) =%d sec\n',k_fix,t_log); fprintf('Infeasible start newton with fixed newton step(%d) =%d sec\n',n_fix,t_nw); fprintf('Infeasible start newton with fixed newton and barrier =%d sec\n',t_lgnw); %% Plotting x_mat = zeros(T*n,1); u_mat = zeros(T*m,1); for i=1:(m+n):length(x_opt_mat) if i==1 u_mat(i:i+m-1) = x_opt_mat(i:i+m-1); x_mat(i:i+n-1) = x_opt_mat(i+m:i+m+n-1); else u_mat((i-1)/(m+n)*m+1:(i-1)/(m+n)*m+m) = x_opt_mat(i:i+m-1); x_mat((i-1)/(m+n)*n+1:(i-1)/(m+n)*n+n) = x_opt_mat(i+m:i+m+n-1); end end x_full = zeros(T*n,1); u_full = zeros(T*m,1); for i=1:(m+n):length(x_opt_full) if i==1 u_full(i:i+m-1) = x_opt_full(i:i+m-1); x_full(i:i+n-1) = x_opt_full(i+m:i+m+n-1); else u_full((i-1)/(m+n)*m+1:(i-1)/(m+n)*m+m) = x_opt_full(i:i+m-1); x_full((i-1)/(m+n)*n+1:(i-1)/(m+n)*n+n) = x_opt_full(i+m:i+m+n-1); end end x_log = zeros(T*n,1); u_log = zeros(T*m,1); for i=1:(m+n):length(x_opt_log) if i==1 u_log(i:i+m-1) = x_opt_log(i:i+m-1); x_log(i:i+n-1) = x_opt_log(i+m:i+m+n-1); else u_log((i-1)/(m+n)*m+1:(i-1)/(m+n)*m+m) = x_opt_log(i:i+m-1); x_log((i-1)/(m+n)*n+1:(i-1)/(m+n)*n+n) = x_opt_log(i+m:i+m+n-1); end end
🎉3 参考文献
[1]黄彦春. 基于神经网络的快速模型预测控制算法研究[D].浙江大学,2018.
部分理论引用网络文献,若有侵权联系博主删除。