分布式问题,你知道几个?

news2024/10/6 12:18:47

你好,我是田哥

现在的单体服务是很难应付面试了,必须要把分布式相关技术给讲清楚,否则面试难搞。

下面我们来聊聊,分布式环境下会面临哪些问题。

先来看一下主要内容:

e149ec3a57c2342b4d0f1a661d201572.jpeg

分布式系统中常见的难题包括:

  1. 一致性问题:在分布式环境下,由于网络延迟、节点故障等因素,可能会导致数据不一致。如何实现一致性成为了一个难点。

  2. 可用性问题:分布式系统中的各个节点可能有不同的故障率,如何保证整个系统的可用性是一个难点。

  3. 可扩展性问题:当需要处理更多的请求时,如何增加系统的处理能力而不影响已有的功能和性能是一个难点。

  4. 安全问题:分布式系统的数据和服务可能会面临各种安全威胁,如何保障系统的安全也是一个难题。

  5. 事务问题:在分布式环境下,如何保证多个操作之间的一致性和原子性是一个难点。

  6. 网络通信问题:在分布式系统中,节点之间需要频繁地通信,网络的不稳定性会对系统的可靠性造成影响。

  7. 故障诊断问题:在分布式系统中,当出现故障时,如何快速找到故障原因并进行修复也是一个难点。

  8. 版本控制问题:在分布式系统中,不同的节点可能运行着不同的软件版本,如何进行版本控制和升级也是一个难点。

  9. 并发控制问题:在分布式系统中,多个节点可能同时访问同一资源,如何进行并发控制和保证数据的一致性也是一个难点。

  10. 数据同步问题:在分布式系统中,数据需要在不同的节点之间同步,如何保证数据的一致性和及时性是一个难点。

分布式问题:一致性

保证分布式系统的数据一致性是一个比较复杂的问题,需要综合考虑多个因素,并使用合适的技术手段来解决。以下是几种常用的数据一致性保证方法:

  1. 两阶段提交协议(Two-Phase Commit Protocol,2PC):2PC是一种经典的分布式事务协议,通过协调者和参与者之间的交互,实现整个分布式事务的原子性和一致性。该协议主要分为两个阶段:准备阶段和提交阶段。

  2. 三阶段提交协议(Three-Phase Commit Protocol,3PC):3PC是在2PC基础上进一步改进的协议,能够更好地解决协调者故障导致的阻塞问题。该协议主要增加了一个预提交阶段,以便在出现故障时能够更快地恢复。

  3. Paxos算法:Paxos是一种分布式一致性算法,通过选举Leader的方式,实现分布式系统中的状态机复制。该算法主要分为两个阶段:提议和批准。通过多轮投票和协商,最终达成一致性。

  4. ZooKeeper:ZooKeeper是一种分布式协调服务,能够提供分布式锁、命名服务、配置管理等功能。通过使用ZooKeeper,可以实现分布式系统中的数据一致性和协调。

  5. 分布式缓存:使用分布式缓存技术,如Redis集群、Memcached、Hazelcast等,可以缓存系统中的热点数据,并实现数据的高可用和容错能力。

在设计分布式系统时,应该根据具体场景综合考虑以上方法,并根据系统的特点选择适合的技术手段来保证数据一致性。

分布式问题:可用性

要保证整个分布式系统的可用性,可以从以下几个方面入手:

  1. 高可用架构设计:在架构设计阶段,应考虑采用高可用架构,包括负载均衡、多节点部署、集群化等措施,以及灾备方案,如备份、冗余、故障自动切换等,以确保系统的稳定性和可靠性。

  2. 异常监控与自动化处理:要对系统进行全面、细致的监控,实时捕获系统运行过程中的异常情况,并通过自动化处理手段来避免或迅速解决问题,以确保系统的稳定性和可靠性。

  3. 数据库事务的处理:在分布式环境下,数据库事务的正确处理非常重要。应合理设计事务边界,采用适当的分布式事务模型,如AT、TCC、SAGA等,以确保不同服务之间的事务一致性。

  4. 容错与恢复能力:在分布式系统中,每个节点都可能出现故障,因此需要在设计时考虑容错与恢复能力。例如,使用断路器机制(Circuit Breaker)在节点故障时快速切换到备用节点,使用Hystrix等容错框架实现服务降级,使用分布式缓存等手段提高系统的可用性。

  5. 性能测试与优化:在项目开发和上线之前,需要进行全面、细致的性能测试和优化,以确保系统的吞吐量、响应时间、并发能力等都能够满足预期要求,从而保证系统的稳定性和可靠性。

分布式问题:可扩展性

要保证分布式系统的可扩展性,可以从以下几个方面入手:

  1. 水平扩展:在设计分布式系统时,应考虑使用水平扩展的方式来增加系统的容量和处理能力。这意味着将系统分成多个独立的部分,并将其部署到不同的节点上,以实现负载均衡和横向扩展。

  2. 服务拆分:将系统按功能模块进行拆分,将每个模块作为一个独立的服务部署,以实现服务化和微服务架构。这样可以更容易地扩展、维护和升级整个系统。

  3. 数据库扩展:对于大型分布式系统,需要采用分布式数据库或者数据库集群来解决数据存储的问题,并实现数据的高可用性和容错能力。例如,可以使用MySQL Cluster、MongoDB Sharding等技术。

  4. 缓存技术:缓存技术是提高分布式系统性能的重要手段之一。可以使用分布式缓存技术,如Redis、Memcached等,来缓存热点数据,减轻数据库负载,从而提高系统的吞吐量和响应速度。

  5. 异步消息队列:异步消息队列是实现松耦合和异步通信的重要技术。可以使用消息队列技术,如RabbitMQ、Kafka等,将不同服务之间的通信转化成异步消息的形式,从而提高系统的可扩展性和稳定性。

  6. 灵活的架构:在设计分布式系统时,应采用灵活的架构,以便能够快速响应业务需求和变化。例如,可以使用容器化技术,如Docker、Kubernetes等,实现快速部署、升级和扩展整个系统。

分布式问题:版本控制和升级

在分布式系统中进行版本控制和升级需要考虑多个因素,包括系统的复杂度、用户数量、运维成本等。以下是一些常用的方法:

  1. 版本控制:在分布式系统中进行版本控制,通常使用分布式版本控制工具,如Git或Mercurial等。团队成员可以通过这些工具协作开发,并管理代码的版本历史。对于部署到生产环境的版本,应该使用标签或分支的方式进行标记,方便回滚或比较不同版本。

  2. 基于容器的部署:采用容器化技术(如Docker)打包应用程序及其依赖项,将其部署为容器镜像。这样,在部署时只需传递镜像文件即可,简化了部署流程。如果需要更新应用程序,只需构建新的镜像并重新部署即可。

  3. 蓝绿部署:使用蓝绿部署技术来完成系统的升级。蓝绿部署即是在两个完全相同的环境中同时部署不同版本的软件,例如部署一个蓝色版本和一个绿色版本。然后将流量从蓝色版本切换到绿色版本,直到确定新版本稳定后再关闭旧版本。

  4. 金丝雀发布:在分布式系统中,可以使用金丝雀发布(Canary release)的方式进行升级。这种方法是先将新版本部署到一小部分用户身上,验证其是否存在问题,如果没有问题再逐步升级所有用户。

  5. 无停机升级:无停机升级技术能够在不影响服务可用性的情况下完成升级,通常使用的方法是逐个替换节点或进程,确保系统的功能和性能都正常运行。

在实际使用过程中应该根据具体的应用场景选择合适的升级方法,并制定详细的升级计划和测试方案,以确保升级过程的平滑和稳定。

分布式问题:数据同步

在分布式环境下,数据同步问题是一个非常重要的问题。因为在分布式环境下,数据可能会分散在不同的节点上,如果不及时同步,就会导致数据不一致的问题,甚至会影响整个系统的稳定性。因此,解决分布式环境下的数据同步问题至关重要。

以下是几种常见的解决方案:

  1. 主从复制:主从复制是一种常见的数据同步方案,其中一个节点充当主节点,负责写操作,其他节点充当从节点,负责读操作。主节点将写操作同步给从节点,从节点通过复制主节点的数据来保持数据一致性。

  2. 多主复制:多主复制是一种更加灵活的数据同步方案,其中多个节点充当主节点,任何一个主节点都可以进行写操作,其他节点则通过复制主节点的数据来保持数据一致性。

  3. 分片同步:分片同步是一种将数据按照一定规则分割成多个片段进行同步的方案。每个节点只负责同步自己的数据片段,这样可以有效减少同步的数据量,提高数据同步效率。

  4. 基于消息队列的同步:基于消息队列的同步是一种将数据写入消息队列,然后由消费者节点进行消费的方案。这种方案可以提高系统的可扩展性和可靠性,但是需要考虑消息队列的性能和可用性问题。

  5. 基于版本控制的同步:基于版本控制的同步是一种通过版本控制系统来同步数据的方案。每个节点都可以进行写操作,但是需要通过版本控制系统来管理和同步数据的版本,以保证数据一致性。

总之,在分布式环境下,数据同步问题是一个非常重要的问题,需要根据实际情况选择合适的方案来解决。以上是几种常见的解决方案,具体选择哪种方案需要根据实际情况进行权衡和选择。

分布式问题:分布式事务

分布式环境下,分布式事务需要解决的问题是如何确保多个节点之间的数据一致性。以下是常见的几种解决方案:

  1. 两阶段提交(2PC):是目前最为广泛应用的分布式事务处理协议,采用协调者和参与者的角色,通过预提交、提交和回滚三个步骤来保证事务的原子性。

  2. 补偿事务:补偿事务机制是指在分布式环境下,通过一些补偿措施来达到事务的最终一致性。这种机制需要业务系统具备一定的补偿能力。

  3. 三阶段提交(3PC):相比于2PC,3PC在第一阶段中引入了超时机制,可以避免某些异常情况下的阻塞问题。但是在网络不稳定的情况下,仍然存在无法达成一致性的问题。

  4. 基于消息队列(MQ)的事务处理:将可以独立执行的任务封装成消息,在消息队列中进行异步处理,通过消息确认机制来保证数据一致性。

  5. 最大努力通知(Best Effort Delivery,BED):在分布式事务处理过程中,先将操作提交到本地,再异步的通知其他节点进行操作,当通知失败时,执行回滚操作。

  6. TCC(Try-Confirm-Cancel)事务模型:将分布式事务拆分为三个阶段,try阶段通过资源预留来保证事务的可行性,confirm阶段提交所有的资源变更,cancel阶段进行所有资源的回滚操作。

不同的方案有各自的优缺点和适用场景。具体选择哪种方案需要根据实际业务场景和需求来确定。

以下是一些常见的框架/组件,可以用来实现分布式事务:

  1. Seata:Seata是阿里巴巴开源的一款高性能分布式事务解决方案。

  2. TCC-Transaction:通过TCC模式实现分布式事务。

  3. Hmily:也是通过TCC模式实现分布式事务。

  4. ShardingSphere-Proxy:通过在SQL执行时进行拦截和转发,从而实现分布式事务的管理。

  5. Atomikos:Atomikos是一个Java事务管理器,支持分布式事务和XA协议。

  6. Bitronix:Bitronix也是一个Java事务管理器,同样支持分布式事务和XA协议。

  7. Narayana:Narayana是JBoss社区的事务管理器,同样支持分布式事务和XA协议。

以上这些框架/组件都可以用来实现分布式事务,不同的场景和需求会有不同的选择。

分布式问题:安全性

在分布式环境下,安全问题的解决方案如下:

  1. 认证和授权:在分布式环境下,需要对用户进行认证和授权,确保只有授权用户才能访问敏感数据和资源。常见的认证和授权方案包括基于令牌的访问控制和基于角色的访问控制。

  2. 加密通信:在分布式环境下,通信过程中可能会存在窃听和篡改的风险,因此需要使用加密通信来保证通信的机密性和完整性。常见的加密通信方案包括SSL/TLS和VPN等。

  3. 数据备份和恢复:分布式环境下的安全问题不仅包括攻击和窃取,还包括意外损失和灾难性故障,因此需要对数据进行备份和恢复,以保证数据的安全性和可用性。

  4. 监控和日志记录:在分布式环境下,需要对系统进行实时监控和日志记录,以便及时发现和处理异常情况和安全事件。常见的监控和日志记录方案包括安全信息和事件管理系统(SIEM)和日志分析工具等。

  5. 安全培训和教育:在分布式环境下,安全问题不仅涉及技术方面,还涉及人员管理和教育。因此需要对员工进行安全培训和教育,增强员工的安全意识和技能,防范内部安全风险。

总之,在分布式环境下,安全问题的解决需要综合考虑技术、管理和教育等多个方面,采取多层次、多角度的安全措施,以确保系统的安全性和可靠性。

分布式问题:网络

在分布式环境下,网络问题是非常常见的,例如网络延迟、网络拥堵、网络故障等。这些问题会影响整个系统的性能和稳定性,因此需要采取一些方案来解决网络问题。

  1. 负载均衡:负载均衡是一种将网络流量分配到多个服务器上的技术,以提高系统的性能和可靠性。负载均衡可以让系统自动选择最优的服务器来处理请求,从而减少网络延迟和拥堵。

  2. 分布式缓存:分布式缓存是一种将数据存储在多个节点上的技术,以提高系统的性能和可靠性。分布式缓存可以减少对数据库的访问,从而减少网络延迟和拥堵。

  3. 分布式数据库:分布式数据库是一种将数据存储在多个节点上的技术,以提高系统的性能和可靠性。分布式数据库可以让系统自动选择最优的节点来处理请求,从而减少网络延迟和拥堵。

  4. 冗余备份:冗余备份是一种将数据存储在多个节点上的技术,以提高系统的可靠性。如果某个节点发生故障,系统可以自动切换到另一个节点,从而确保系统的正常运行。

  5. 消息队列:消息队列是一种将消息存储在队列中的技术,以提高系统的可靠性和可扩展性。消息队列可以让系统异步处理请求,从而减少网络延迟和拥堵。

  6. 容错机制:容错机制是一种在系统发生故障时自动恢复的技术。容错机制可以让系统在出现故障时自动切换到备用节点,从而确保系统的正常运行。

总之,分布式环境下,解决网络问题的方案有很多,例如负载均衡、分布式缓存、分布式数据库、冗余备份、消息队列和容错机制等。这些方案可以提高系统的性能、可靠性和可扩展性,从而确保系统的正常运行。

分布式问题:故障诊断

在分布式环境下,由于系统的复杂性和多样性,故障的发生是不可避免的。因此,故障诊断方案是保障系统正常运行的重要手段之一。下面详细介绍分布式环境下的故障诊断方案。

  1. 监控系统状态:在分布式系统中,监控系统状态是必要的。可以通过实时监控系统的各种指标,如CPU、内存、网络等的使用情况,来检测系统是否出现异常。同时,也可以通过监控系统日志等信息来发现潜在的问题。

  2. 报警机制:一旦系统出现异常,需要及时报警,以便及时采取措施。在分布式环境下,一般采用集中式报警系统,以提高效率。当有异常发生时,系统会自动发送报警信息到指定的人员或群组。

  3. 自动化故障排查:在分布式环境下,由于系统的复杂性和多样性,手动排查故障是非常困难的。因此,需要采用自动化故障排查机制,通过分析系统日志、监控数据等信息,自动找出故障的根本原因,并给出解决方案。

  4. 分布式跟踪系统:分布式跟踪系统可以帮助我们快速定位故障发生的位置,从而更快地排除故障。该系统会记录系统中各个组件之间的调用关系和时间,当系统出现异常时,可以通过分析这些数据,找出问题所在。

  5. 人工排查:虽然自动化故障排查可以帮助我们快速定位故障,但有些故障还是需要人工排查。在这种情况下,需要通过对系统的各个组件进行逐一排查,找出故障的原因。同时,也需要对系统进行优化,以减少故障的出现。

总之,分布式环境下的故障诊断方案需要从多个角度出发,综合采用多种手段,以提高故障诊断的效率和准确性。此外,对于分布式系统,还需要进行定期的维护和优化,以减少故障的出现。

分布式问题:并发控制

在分布式环境下,并发控制问题是一个重要的问题,因为多个客户端同时访问同一资源可能会导致数据不一致或者资源竞争的问题。

解决方案主要有以下几种:

  1. 乐观并发控制:通过版本号来控制并发,每个客户端在读取数据的时候,都会获取一个版本号,如果在修改该数据的时候发现版本号与当前版本不一致,则说明该数据已经被其他客户端修改过,需要重新读取数据再进行修改。

  2. 悲观并发控制:通过锁机制来控制并发,每个客户端在访问数据的时候会获取一个锁,其他客户端需要等待该锁释放后才能进行访问。

  3. 分布式事务:通过协调多个节点的事务,保证多个操作的原子性,一致性,隔离性和持久性。

  4. 基于时间戳的并发控制:通过时间戳来控制并发,每个客户端在访问数据的时候会获取一个时间戳,如果其他客户端在该时间戳之前修改了数据,则该客户端需要重新读取数据再进行修改。

总的来说,并发控制问题在分布式环境下是一个复杂的问题,需要根据具体的情况选择合适的解决方案。

好了,以上就是今天给大家分享的分布式环境下的相关问题。

因为随便一个点都可以写成一篇大长文,有的甚至一篇文章都写不完。

我们下期再见,记得点赞收藏

题外话:如果有需要简历修改、简历优化、简历包装、面试辅导、模拟面试、技术辅导、技术支持等,欢迎加我微(tj20120622)。

我的个人技术博客:http://woaijava.cc/

回复77 ,获取《面试小抄2.0版》

回复电子书,获取后端必读的200本电子书籍。

推荐文章

手把手教你写简历,包装、优化!

面试不问java,问MySQL,如何破局?

MySQL 开发规范,非常详细,建议收藏!

手把手教:如何准备面试!

用Spring Boot搞了个医院项目,附源码!

应届生,实力已超6年,太卷了!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/443595.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PackageMS 启动

1.PackageMS 相关框架类 2.PackageMS 启动过程 2.1 # SystemServer.java /** 291 * The main entry point from zygote. 292 */ 293 public static void main(String[] args) { 294 new SystemServer().run(); 295 } 上面是SystemServer的主函数。 pr…

RK3568开发板 buildroot编译配置

启扬智能RK3568开发板提供两种文件系统,一种是Debian,另外一种是BuildRoot。在使用过程中,有些客户需要添加属于自己的软件包,所以在此分享启扬RK3568关于BuildRoot编译配置的方法以及相关注意事项。 启扬提供的源码是完整sdk&am…

毕业论文用什么流程图软件比较好?

在写作论文的时候使用流程图,会让我们的论文看起来更加有逻辑。并且流程图的图片都可以在PPT中随意插入以及使用。 基础流程图作为最为基本和简单的的流程图方式,一般不区分用户角色和场景,适用于简单场景,梳理单一的流程情况&am…

nssctf web入门(8)

目录 [SWPUCTF 2021 新生赛]easy_sql [SWPUCTF 2021 新生赛]error 这里通过nssctf的题单web安全入门来写,会按照题单详细解释每题。题单在NSSCTF中。 想入门ctfweb的可以看这个系列,之后会一直出这个题单的解析,题目一共有28题,…

mysql(8.0)_主从复制

1.环境介绍 自己的主机--master 同学的主机--slave2.安装mysql https://blog.csdn.net/weixin_45955039/article/details/130144515?spm1001.2014.3001.55013. 准备工作 3.1在云服务器上添加端口号 3.2关闭防火墙 systemctl stop firewalld setenforce 04.master上的配置 …

数字图像处理笔记 第二章 数字图像基础

第二章 数字图像基础 2.1 视觉感知要素 知己知彼,百战不殆。了解人类的视觉感知,有助于我们学习数字图像处理。本小节中眼睛中图像的形成,让我联想到照相机成像,人眼的亮度适应和辨别让我想到手机屏幕的自动调节亮度。由于这部分…

马尔科夫链HMM

在机器学习算法中,马尔可夫链(Markov chain)是个很重要的概念。马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈马尔可夫(俄语&a…

如何排查线上环境CPU100%问题

如何排查线上环境CPU100%问题 cpu爆满的原因可能:1、形成了死锁。2、形成了死循环 1.使用arthas 2.使用命令的方式 死锁的检查: 方式一: 可通过jps或者ps -ef | grep java的命令查看到运行程序的PID使用jstack -l pid 命令查看线程的堆栈信…

代码随想录|day49|动态规划part10● 121. 买卖股票的最佳时机 ● 122.买卖股票的最佳时机II

它来了它来了!我们最爱的股票问题它来了!! 121. 买卖股票的最佳时机 链接:代码随想录 视频链接:动态规划之 LeetCode:121.买卖股票的最佳时机1_哔哩哔哩_bilibili 好难懂,尤其是理解状态的变化以…

openGauss 5.0企业版主从部署,实战狂飙

📢📢📢📣📣📣 哈喽!大家好,我是【IT邦德】,江湖人称jeames007,10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】!😜&am…

【排序】归并排序(递归和非递归)

归并排序 前言图解大致思路代码实现递归非递归 时间复杂度和空间复杂度 前言 这是我讲的最后一个排序了,归并排序难度不大,也是分治的思想。 归并排序时间复杂度是在N*logN里面还是比较优的,毕竟实现起来的是完全二分的,但是差就…

2023第十届大唐杯省赛心得体会总结

第十届“大唐杯”全国大学生新一代信息通信技术大赛结束,分享一下2023第十届大唐杯省赛的相关经验。 年初研究生组就开始报名了,所以这回也是摩拳擦掌,加上大唐杯的认可度很高,今年的情况只会更卷,需要掌握一定的通信…

java数据结构学习第三期

给你一个链表的头节点 head ,判断链表中是否有环。 如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(…

4.17-4.18学习总结

MD5 MD5: 1、压缩性 2、容易计算 3、抗修改性 4、弱抗碰撞 5、强抗碰撞 为什么需要MD5? 存储一些敏感信息的时候,如果不进行加密会出现安全问题。 例如:系统登录的密码,如果数据库中的密码采用明文,一旦数据库泄…

扬帆优配|多路资金扎堆博弈,顶级游资章盟主3天爆买21个亿

4月20日,中科曙光(603019.SH)盘中稳步拉升,最终收涨9.99%,股价一举刷出了历史新高,达到了54.71元/股,全天的成交额也高达97.43亿元。 盘后发表的龙虎榜数据显现,知名游资章盟主的常用…

Qt Quick - PageIndicator

Q 理论使用总结 一、概述二、简单使用例子1. SwipeView 和 PageIndicator2. StackLayout 和 PageIndicator 三、常用属性四、定制化 一、概述 PageIndicator用于指示含有多个页面的容器中,当前处理活动的页。记住,这个只是指示当前的活动页,…

java IO流进阶 对象处理流, 转换流, 打印流

目录 一、对象处理流 1.作用 : 2.序列化和反序列化 : 3.ObjectOutputStream : 1 概述 2 演示 4.ObjectInputStream : 1 概述 2 演示 5.关于序列化的细节 : 6.标准输入输出流: 二、转换流 1.概述 : 2.InputStreamReader : 3.OutputStreamWriter : 三、打印…

GB/T28181国标视频监控平台TINYGBS实现监控视频直播的详细搭建流程

TinyGBS是基于GB/T28181-2016(公共安全视频监控联网系统信息传输、交换、控制技术要求)开发的成熟的、敏捷的、产品化的视频汇聚平台,支持标准的监控设备的接入和管理,在多个应用场景中成功落地。实现实时视频调阅、设备控制(云台控制、聚焦控制、拉框放…

GeoDataFrame 应用:公园分布映射至subzone

0 问题描述 我们知道新加坡的monument分布:Monuments-Data.gov.sg 我们又知道新加坡的subzone信息: Master Plan 2019 Subzone Boundary (No Sea) - Datasets - Dataportal.asia 我们希望生成一个 dataframe,表示每一个subzone有几个monumen…

Django REST Framework(DRF)框架之认证Authentication与权限Permission

DRF框架之认证与权限 认证与权限认证(Authentication)权限(Permission) 认证和权限的使用创建用户用于验证配置认证与权限(全局)视图指定认证与权限(局部) 自定义权限概述创建自定义权限类使用自定义权限类 使用TokenAuthenticati…