残差 Gabor 卷积网络和 FV-Mix 指数级数据增强策略用于手指静脉识别

news2024/10/5 20:28:00

论文背景

手指静脉识别系统的性能受到手指静脉训练样本不足的限制,导致特征学习不足和模型泛化能力弱:DCNN 需要大量的数据来学习更抽象的语义信息进行分类。对于指静脉识别,由于每个类别只包含少量样本,极易出现过拟合。原因之一是感知场大小固定在卷积层中的每个位置,缺乏处理几何变换的内在机制

建立一个更有效的DCNN,使验证误差随训练误差不断减小,并提高模型的泛化能力是一个困难的挑战。

静脉图像的成像原理在于充分利用静脉等生理组织中脱氧血红蛋白对各种波长近红外光吸收率的差异而形成图像。

当使用特定波长(700-900纳米)的近红外线(NIR)光照亮手部时,光穿过表皮进入皮下组织,在那里被散射。散射的近红外光被静脉血中的脱氧血红蛋白严重吸收,导致当由图像传感器成像时静脉图案的位置显示为暗阴影,而其他非静脉图案区域显示为高亮度区域。

在近红外成像中,生物组织具有高度的非均匀性和多重散射介质,不可避免地导致图像分辨率下降

论文主要内容

(1)提出了一种新的残差Gabor卷积网络。 针对手指静脉图像成像过程中存在的分辨率低、对比度低、信噪比低、视觉效果模糊等问题,设计了残差Gabor模块。 利用可学习Gabor卷积层增强模型的浅层特征,将其良好的方向和尺度选择性地引入网络,实现脉纹特征的有效增强。 通过引入可学习Gabor卷积,将人工特征的特性也引入到模型中,加速模型的收敛,从而解决了模型的过拟合问题,提高了模型的识别精度。

(2)提出了一种新的稠密语义分析模块。 在对浅层特征进行Gabor卷积层增强后,经过一系列卷积和池化操作,得到的深层特征包含了更丰富的语义信息。 DSAM利用全局平均池和通道关注机制,进一步分析和提取深层特征映射中的语义信息,然后将这些语义信息放入全连通层,用于辅助最终模型的分类。

(3)提出了一种简单有效的静脉生物特征数据论证策略FV-MIX。 通常手指静脉采集系统只针对每个对象采集少量图像,无法为深度学习模型提供足够的数据进行学习。 论文提出了一种新的手指静脉图像离线增强策略。 通过对单个个体预处理后的ROI图像按比例线性合并,最终可以得到 2^n-1 幅用于训练的指静脉ROI图像(是从单个个体采集的样本数)。

残差Gabor卷积网络

传统的 Gabor 滤波器具有高度的可操作性,可以赋予模型处理空间变换属性的能力。 但是,当仅使用固定 Gabor 滤波器时,不能完全利用这种能力。

Residual Gabor convolutional network architecture

首先将训练图像送入RGCL进行浅层特征提取和增强,然后将增强后的特征依次送入后续残差模块进行深层特征提取,并选择第三个瓶颈设计稠密语义分析模块。 然后从稠密语义分析模块输出一组富含增强语义信息的特征,连接到最终的全连接层,辅助手指静脉分类。

RGCL是一个残差模块,它使用一层卷积和一层Gabor方向滤波器(GOFs)。 

GOF是一种可引导滤波器,由于浅层特征中存在大量的冗余特征,因此利用Gabor滤波器组对学习到的卷积滤波器进行处理,生成增强的静脉模式特征映射。增强的特征图有时会过度增强;因此,残差结构和通道注意机制被用来减轻这种过度增强 。      

卷积 Gabor 方向滤波器 (GoFs)

Gabor滤波器是有方向和尺度的。 将方向信息编码在学习滤波器中,同时将尺度信息嵌入到不同的层中,从而将方向特性融入到DCNN中。 GOFS中利用Gabor滤波器捕捉到的方向和尺度信息,增强了相应的图案、轮廓和边缘特征。        

 GoFs具体描述在另一篇论文:http://t.csdn.cn/RR2gQ

论文在四个方向(0,Π/4,Π/2,3Π/4)上建立Gabor滤波器来产生调制GOF。对于尺度参数,将GOFS应用于不同尺度下的特征映射,使Gabor滤波器具有良好的尺度选择性。

残差 Gabor 卷积层

GoFs 增强 DCNN 中的浅层特征后,进一步增强了特征图中的模式、轮廓和边缘特征。因此,该模型在学习特定特征方面具有传统机器学习的优势,大大缓解了手指静脉图像样本不足的问题。但是,特征进一步固定化,削弱了DCNN自动选择学习到的特征的能力,模型的退化变得更加明显。

Residual Gabor convolutional layer

论文将GOFS与调制滤波器相结合,设计了RGCL模块来解决上述问题。

F_{CA}(\cdot ) 是作用于不同 GoF 分支的通道注意力。 

CAT运算是将调制在不同方向的GOF连接后的特征映射。经1×1卷积(降维)后输出,最终得到RGCL的输出特征映射。论文在每个卷积运算或类卷积运算之后添加了 ReLU 和 BN(解决梯度消失和模型退化)。

稠密语义分析模块

假设浅层特征被增强,那么深层特征同样被激活得更强,包含更明显的语义信息。 同时,增强后的特征过于同质,更容易导致梯度消失,因此论文设计了DSAM来进一步提取和分析增强后的特征映射中包含的语义信息。 

Densely semantic analysis module

 

F_C ,F_{CA} , F_{AP} 分别是全连接层、通道关注(CA)和全局平均池(GAP)的操作。

FV-MIX

通常,手指静脉图像不适合裁剪或大角度旋转增强,数据无法充分转换。同时,无论对单个图像样本进行何种几何变换,其数据信息都保持不变。因此,我们设计了一种简单有效的策略 FVMix 来扩充手指静脉数据。 FV-Mix通过考虑单个分类中的多个样本进行混合,不同于一些通过GAN或风格迁移得到的样本图像,FV-Mix更符合同类样本简单线性融合得到的真实图像的像素分布。

FV-Mix data augmentation (𝑁 = 6).

 

 D_A^i 表示通过选择 i 样本进行融合而获得的增强数据子集,D 表示要增强的类的样本集,其中 N 是样本数。𝐹𝑖𝑥(𝐷, 𝑖) 操作表示子集 𝐷 中的每个 𝑖 样本的线性融合来形成集合。D_A 代表 𝐷 扩充后的全集,包含所有的数据扩充子集。在实际训练过程中,对于单类样本比较多的数据集。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/442465.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MinIO快速入门

一、MinIO概述 官网地址:http://www.minio.org.cn/ 文档地址:http://docs.minio.org.cn/docs/ MinIO是一款基于Apache License v2.0开源协议的分布式文件系统(或者叫对象存储服务),可以做为云存储的解决方案用来保存海…

如何借助测控终端实现设备远程运维?

随着物联网技术的发展,数字化越来越重要。数据是新的生产要素,是基础性资源和战略性资源,也是重要生产力。因此许多企业纷纷转型智慧工厂,但老旧的设备无法获取相应的数据,更换老旧设备的成本又太高,就无法…

【计算机架构】如何计算 CPU 时间

目录 0x00 响应时间和吞吐量(Response Time and Throughput) 0x01 相对性能(Relative Performance) 0x02 执行时间测量(Measuring Execution Time) 0x03 CPU 时钟(Clocking) 0x…

用docker承载mysql

这两天部署系统到生产服务器,前端后端部署docker是毫无疑义的,但mysql呢? 答案是mysql可以部署到docker。 1、数据文件挂载到宿主机 将mysql部署于docker,会有一个担心,就是docker容器的删除非常的容易,…

修改树莓派系统的更新源,软件安装源和pip安装源

本文目录 1、更换系统更新源2、更改软件源3、更换 pip 源4、更新系统与软件5、附加知识 Linux系统常用的安装源主要有系统更新源和软件安装源二大类,系统更新源是用于对Linux系统本身进行升级更新的,软件安装源是用于通过apt命令安装软件的。随着python的…

【Zigbee】解密Zigbee地址分配——你需要知道的一切

💖 作者简介:大家好,我是Zeeland,全栈领域优质创作者。📝 CSDN主页:Zeeland🔥📣 我的博客:Zeeland📚 Github主页: Undertone0809 (Zeeland) (github.com)&…

URL 转为QR code(二维码)

推荐一个良心的网站,能够免费地将url、text编码为二维码,而且还能设计logo、颜色等。 https://www.the-qrcode-generator.com/ 如下图: 可以自己定义logo、颜色: 还能查看扫描历史等统计信息: 上述所有功能都是免…

【人工智能概论】 RNN、LSTM、GRU简单入门与应用举例

【人工智能概论】 RNN、LSTM、GRU简单入门与应用举例 文章目录 【人工智能概论】 RNN、LSTM、GRU简单入门与应用举例一. RNN简介1.1 概念简介1.2 方法使用简介 二. 编码层embedding2.1 embedding的参数 一. RNN简介 1.1 概念简介 循环神经网络(Recurrent Neural Network)理念…

苹果电容笔值得买吗?ipad电容笔推荐平价

在当今时代,高科技已经成为推动数字产品发展的重要推动力。无论是在工作上,还是在学习上,大屏幕都能起到很好的作用。IPAD将会更好地融入我们的生活,不管是现在还是未来。而ipad配上一支简单的电容笔,不仅可以提高工作…

【机器学习】P22 过拟合和欠拟合的探究2,高偏差与高方差

过拟合与欠拟合的探究2,高偏差与高方差 高偏差和高方差过拟合与欠拟合的解决策略带有L2正则化的神经网络带有早停法的神经网络的完整案例 MINST 高偏差和高方差 高偏差和高方差是机器学习中常见的两个问题,会影响模型的性能。 高偏差(High …

MySQL数据库,聚合查询

目录 1、聚合查询 1.1聚合函数 1.1.1count函数 1.1.2sum函数 1.1.3avg函数 1.1.4max函数 1.1.5min函数 1.2group by子句 1.3having 1、聚合查询 1.1聚合函数 聚合函数查询又叫函数查询,它是通过一些特定的函数根据需求来查询相关的信息,常见的…

代码随想录|day52| 动态规划part13● 300.最长递增子序列 ● 674. 最长连续递增序列 ● 718. 最长重复子数组

300 最长递增子序列 链接&#xff1a;力扣 看了思路之后写的代码&#xff0c;不知道为什么报错了。 错误一&#xff1a; int nnums.size();vector<int>dp(n,0);dp[0]1;for(int i1;i<n;i){for(int j0;j<i;j){if(nums[i]>nums[j]){dp[i]max(dp[i],dp[j]1);}}}retu…

Java版本企业电子招投标采购系统源代码——功能模块功能描述+数字化采购管理 采购招投标

​ 功能模块&#xff1a; 待办消息&#xff0c;招标公告&#xff0c;中标公告&#xff0c;信息发布 描述&#xff1a; 全过程数字化采购管理&#xff0c;打造从供应商管理到采购招投标、采购合同、采购执行的全过程数字化管理。通供应商门户具备内外协同的能力&#xff0c;为外…

ChatGPT 聊天接口API 使用

一、准备工作 1.准备 OPENAI_ACCESS_TOKEN 2.准备好PostMan 软件 二、测试交流Demo 本次使用POSTMAN工具进行快速测试&#xff0c;旨在通过ChatGPT API实现有效的上下文流。在测试过程中&#xff0c;我们发现了三个问题&#xff1a;    1.如果您想要进行具有上下文的交流&…

【prettier Error resolving prettier configuration for x:\xxx\.prettierrc.js】

Prettier Error resolving prettier configuration for x:\xxx.prettierrc.js 解决方法 Prettier 出现如下错误 错误 内容内联代码片 Error resolving prettier configuration for d:\map\user_package\Leaflet.FileLayer-master\.prettierrc.js ["ERROR" - 10:38…

Facebook、Google、亚马逊,谁将成为跨境电商的营销宠儿?

跨境电商在全球范围内的发展日益迅猛&#xff0c;而营销渠道的选择也变得越来越多样化。在众多的广告平台中&#xff0c;Facebook、Google和亚马逊被公认为是跨境电商卖家们最主要的营销平台。那么&#xff0c;这三个平台中哪个会成为跨境电商的营销宠儿呢&#xff1f; 一、Fac…

自动驾驶——智能底盘构造详解及新发展

摘要&#xff1a; 汽车底盘是指汽车上由传动系统、行驶系统、转向系统和制动系统等部分的组合&#xff0c;其功能包括支承、安装汽车车身、发动机及其它各部件及总成&#xff0c;形成汽车的整体造型&#xff0c;承受发动机动力&#xff0c;保证车辆正常行驶等。 底盘构造介绍 …

摄像头/视频读取_写入

摄像头/视频读取_写入 ➢VideoCapture类: 使用 OpenCV 播放视频&#xff0c;几乎与使用它来显示图像一样容易。播放视频时只需要处理的新问题就是如何循环地顺序读取视频中的每一顿&#xff0c;以及如何从枯燥的电影视频的读取中退出该循环操作。具体如例如下&#xff1a; #…

【计算机架构】如何计算 CPU 动态功耗

&#x1f4dc; 本章目录&#xff1a; 0x00 动态功耗&#xff08;Dynamic Power&#xff09; 0x01 集成电路成本&#xff08;Integrated Circuit Cost&#xff09; 0x02 基准测试&#xff08;SPEC CPU Benchmark&#xff09; 0x03 SPEC功率基准测试&#xff08;SPEC Power B…

vs2022下配置zxing cpp环境

生成zxing 下载zxing&#xff0c;zxing-cpp-master https://github.com/zxing-cpp/zxing-cpp Cmake生成项目&#xff0c;点Generate&#xff0c;把OpenCV_DIR修改了&#xff0c;NameValue没有报红就点Generate。然后点Open Project打开项目。 打开项目后&#xff0c;右击解决…