kafka的高吞吐量和高可用性
- 6.1 高吞吐量
- 6.2 高可用(HA)
6.1 高吞吐量
kafka的高吞吐量主要是由4方面保证的:
(1)顺序读写磁盘
Kafka是将消息持久化到本地磁盘中的,一般人会认为磁盘读写性能差,可能会对Kafka性能提出质疑。实际上不管是内存还是磁盘,快或慢的关键在于寻址方式,磁盘分为顺序读写与随机读写,内存一样也分为顺序读写与随机读写。基于磁盘的随机读写确实很慢,但基于磁盘的顺序读写性能却很高,一般而言要高出磁盘的随机读写三个数量级,一些情况下磁盘顺序读写性能甚至要高于内存随机读写。
(2)零拷贝
零拷贝是指Kafka利用 linux 操作系统的 “zero-copy” 机制在消费端做的优化。首先来看一下消费端在消费数据时,数据从broker磁盘通过网络传输到消费端的整个过程:
1)操作系统从磁盘读取数据到内核空间(kernel space)的page cache;
2)应用程序读取page cache的数据到用户空间(user space)的缓冲区;
3)应用程序将用户空间缓冲区的数据写回内核空间的socket缓冲区(socket buffer);
4)操作系统将数据从socket缓冲区复制到硬件(如网卡)缓冲区;
图6.1 数据从broker磁盘通过网络传输到消费端的整个过程
整个过程如图3.1所示,这个过程包含4次copy操作和2次系统上下文切换,而上下文切换是CPU密集型的工作,数据拷贝是I/O密集型的工作,性能其实非常低效。
零拷贝就是使用了一个名为sendfile()的系统调用方法,将数据从page cache直接发送到Socket缓冲区,避免了系统上下文的切换,消除了从内核空间到用户空间的来回复制。从上图可以看出,"零拷贝"并不是说整个过程完全不发生拷贝,而是站在内核的角度来说的,避免了内核空间到用户空间的来回拷贝。
(3)page cache
为了优化读写性能,Kafka利用了操作系统本身的Page Cache,就是利用操作系统自身的内存而不是JVM空间内存。这样做是因为, JVM中一切皆对象,对象的存储会带来额外的内存消耗; 使用JVM会受到GC的影响,随着数据的增多,垃圾回收也会变得复杂与缓慢,降低吞吐量;另外操作系统本身对page cache做了大量优化,通过操作系统的Page Cache,Kafka的读写操作基本上是基于系统内存的,读写性能也得到了极大的提升。
(4)分区分段
Kafka的message是按topic分类存储的,topic中的数据又是按照一个一个的partition即分区存储到不同broker节点。每个partition对应了操作系统上的一个文件夹,partition实际上又是按照segment分段存储的。这也非常符合分布式系统分区分桶的设计思想。
通过这种分区分段的设计,Kafka的message消息实际上是分布式存储在一个一个小的segment中的,每次文件操作也是直接操作的segment。为了进一步的查询优化,Kafka又默认为分段后的数据文件建立了索引文件,就是文件系统上的.index文件。这种分区分段+索引的设计,不仅提升了数据读取的效率,同时也提高了数据操作的并行度。
6.2 高可用(HA)
kafka的高可用主要是由3方面保证的:
(1)partition副本的分区分配策略
- 生产者的分区分配策略
- 消费者的分区分配策略
(2)kafka的消息传递备份策略
producer将消息发送给分区的leader,leader会将该消息写入其本地log,然后每个follower都会从leader pull数据,follower pull到该消息并将其写入log后,会向leader发送ack,当leader收到了ISR集合中所有follower的ack后,就认为这条消息已经commit了,leader将增加HW并且向producer返回ack。在整个流程中,follower也可以批量的从leader复制数据,以提升复制性能。
producer在发送消息的时候,可指定参数acks,表示"在生产者认为发送请求完成之前,有多少分区副本必须接收到数据",有三个可选值,0、1、all(或-1),默认为1。
- acks=0,表示producer只管发,只要发出去就认为发送请求完成了,不管leader有没有收到,更不管follower有没有备份完成。(At Most Once)
- acks=1,表示只要leader收到消息,并将其写入自己log后,就会返回给producer ack,不考虑follower有没有备份完成。
- acks=all(或-1),表示不仅要leader收到消息写入本地log,还要等所有ISR集合中的follower都备份完成后,producer才认为发送成功。(At Least Once)
- 幂等性,在Producer中设置enable.idempotence=true,在初始化的时候会被分配一个PID,发往同一个Partition的消息会附带Sequence Number,而Broker端会对<PID,Partition, SeqNumber>做缓存,对具有相同主键的消息,Broker只会持久化一条。(Exactly Once)
实际上,为了提高性能,follower在将消息保存到内存中而尚未写入磁盘时,就会向leader发送ack,所以也就不能完全保证异常发生后该条消息一定能被Consumer消费。
(3)kafka中的Leader选举
kafka中涉及到选举的地方有多处,最常提及的也有:cotroller选举 、分区leader选举、consumer group leader的选举。
- controller的选举【broker的leader】
controller的选举是通过broker在zookeeper的"/controller"节点下创建临时节点来实现的,并在该节点中写入当前broker的信息 {“version”:1,”brokerid”:1,”timestamp”:”1512018424988”} ,利用zookeeper的强一致性特性,一个节点只能被一个客户端创建成功,创建成功的broker即为controller,即"先到先得"。
当controller宕机或者和zookeeper失去连接时,zookeeper检测不到心跳,zookeeper上的临时节点会被删除,而其它broker会监听临时节点的变化,当节点被删除时,其它broker会收到通知,重新发起controller选举。
- leader的选举【分区副本的leader】
分区leader的选举由 controller 负责管理和实施,当leader发生故障时,controller会将leader的改变直接通过RPC的方式通知需要为此作出响应的broker,需要为此作出响应的broker即该分区的ISR集合中follower所在的broker,kafka在zookeeper中动态维护了一个ISR,只有ISR里的follower才有被选为Leader的可能。
具体过程是这样的:按照AR集合中副本的顺序查找到第一个存活的、并且属于ISR集合的副本作为新的leader。一个分区的AR集合在创建分区副本的时候就被指定,只要不发生重分配的情况,AR集合内部副本的顺序是保持不变的,而分区的ISR集合上面说过因为同步滞后等原因可能会改变,所以注意这里是根据AR的顺序而不是ISR的顺序找。
- 消费组leader的选举
组协调器会为消费组(consumer group)内的所有消费者选举出一个leader,这个选举的算法也很简单,第一个加入consumer group的consumer即为leader,如果某一时刻leader消费者退出了消费组,那么会重新随机选举一个新的leader。