Python中的@cache巧妙用法

news2025/1/11 13:01:53

缓存是一种空间换时间的策略,缓存的设置可以提高计算机系统的性能,这篇文章主要介绍了Python中的@cache巧妙用法,需要的朋友可以参考下

Python中的@cache有什么妙用?

缓存是一种空间换时间的策略,缓存的设置可以提高计算机系统的性能。具体到代码中,缓存的作用就是提高代码的运行速度,但会占用额外的内存空间。

在Python的内置模块 functools 中,提供了高阶函数 cache() 用于实现缓存,用装饰器的方式使用: @cache。

@cache缓存功能介绍

在cache的源码中,对cache的描述是:Simple lightweight unbounded cache. Sometimes called “memoize”. 翻译成中文:简单的轻量级无限制缓存。有时也被称为“记忆化”。

1

2

3

def cache(user_function, /):

    'Simple lightweight unbounded cache.  Sometimes called "memoize".'

    return lru_cache(maxsize=None)(user_function)

cache() 的代码只有一行,调用了 lru_cache() 函数,传入一个参数 maxsize=None。lru_cache() 也是 functools 模块中的函数,查看 lru_cache() 的源码,maxsize 的默认值是128,表示最大缓存128个数据,如果数据超过了128个,则按 LRU(最久未使用)算法删除多的数据。cache()将maxsize设置成None,则 LRU 特性被禁用且缓存数量可以无限增长,所以称为“unbounded cache”(无限制缓存)。

lru_cache() 使用了 LRU(Least Recently Used)最久未使用算法,这也是函数名中有 lru 三个字母的原因。最久未使用算法的机制是,假设一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小, LRU算法选择将最近最少使用的数据淘汰,保留那些经常被使用的数据。

cache() 是在Python3.9版本新增的,lru_cache() 是在Python3.2版本新增的, cache() 在 lru_cache() 的基础上取消了缓存数量的限制,其实跟技术进步、硬件性能的大幅提升有关,cache() 和 lru_cache() 只是同一个功能的不同版本。

lru_cache() 本质上是一个为函数提供缓存功能的装饰器,缓存 maxsize 组传入参数,在下次以相同参数调用函数时直接返回上一次的结果,用以节约高开销或高I/O函数的调用时间。

@cache的应用场景

缓存的应用场景很广泛,如静态 Web 内容的缓存,可以直接在用户访问静态网页的函数上加 @cache 装饰器。

一些递归的代码中,存在反复传入同一个参数执行函数代码的情况,使用缓存可以避免重复计算,降低代码的时间复杂度。

接下来,我用斐波那契数列作为例子来说明 @cache 的作用,如果前面的内容你看完了还一知半解,相信看完例子你会茅塞顿开。

斐波那契数列是指这样一个数列:1、1、2、3、5、8、13、21、34、… ,从第三个数开始,每个数都是前两个数之和。斐波那契数列的代码实现不难,大部分程序员入门时都做过,在Python中,实现的代码非常简洁。如下:

1

2

3

4

5

6

7

def feibo(n):

    # 第0个数和第1个数为1

    a, b = 1, 1

    for _ in range(n):

        # 将b赋值给a,将a+b赋值给b,循环n次

        a, b = b, a+b

    return a

当然,斐波那契数列的代码实现方式有很多种(至少五六种),本文为了说明 @cache 的应用场景,用递归的方式来写斐波那契数列的代码。如下:

1

2

3

4

5

6

7

8

def feibo_recur(n):

    if n < 0:

        return "n小于0无意义"

    # n为0或1时返回1(前两个数为1)

    if n == 0 or n == 1:

        return 1

    # 根据斐波那契数列的定义,其他情况递归返回前两个数之和

    return feibo_recur(n-1) + feibo_recur(n-2)

递归代码执行时会一直递归到feibo_recur(1)和feibo_recur(0),如下图所示(以求第6个数为例)。

求F(5)时要先求F(4)和F(3),求F(4)时要先求F(3)和F(2),… 以此类推,递归的过程与二叉树深度优先遍历的过程类似。已知高度为 k 的二叉树最多可以有 2k-1 个节点,根据上面递归调用的图示,二叉树的高度是 n,节点最多为 2n-1, 也就是递归调用函数的次数最多为 2n-1 次,所以递归的时间复杂度为 O(2^n) 。

时间复杂度为O(2^n)时,执行时间随 n 的增大变化非常夸张,下面实际测试一下。

1

2

3

4

5

6

import time

for i in [10, 20, 30, 40]:

    start = time.time()

    print(f'第{i}个斐波那契数:', feibo_recur(i))

    end = time.time()

    print(f'n={i} Cost Time: ', end - start)

Output:

第10个斐波那契数: 89
n=10 Cost Time:  0.0
第20个斐波那契数: 10946
n=20 Cost Time:  0.0015988349914550781
第30个斐波那契数: 1346269
n=30 Cost Time:  0.17051291465759277
第40个斐波那契数: 165580141
n=40 Cost Time:  20.90010976791382

从运行时间可以看出,在 n 很小时,运行很快,随着 n 的增大,运行时间极速上升,尤其 n 逐步增加到30和40时,运行时间变化得特别明显。为了更清晰地看出时间变化规律,再进一步进行测试。

1

2

3

4

5

for i in [41, 42, 43]:

    start = time.time()

    print(f'第{i}个斐波那契数:', feibo_recur(i))

    end = time.time()

    print(f'n={i} Cost Time: ', end - start)

Output:

第41个斐波那契数: 267914296
n=41 Cost Time:  33.77224683761597
第42个斐波那契数: 433494437
n=42 Cost Time:  55.86398696899414
第43个斐波那契数: 701408733
n=43 Cost Time:  92.55108690261841

从上面的变化可以看到,时间是指数级增长的(大约按1.65的指数增长),这跟时间复杂度为 O(2^n) 相符。按照这个时间复杂度,假如要计算第50个斐波那契数列,差不多要等一个小时,非常不合理,也说明递归的实现方式运算量过大,存在明显的不足。如何解决这种不足,降低运算量呢?接下来看如何进行优化。

根据前面的分析,递归代码运算量大,是因为递归执行时会不断的计算 feibo_recur(n-1) 和 feibo_recur(n-2),如示例图中,要得到 feibo_recur(5) ,feibo_recur(1) 调用了5次。随着 n 的增大,调用次数呈指数增加,造成了海量不必要的重复,浪费了大量时间。

假如有一个地方将每个 n 的执行结果记录下来,当作“备忘录”,下次函数再接收到这个相同的参数时,直接从备忘录中获取结果,而不用去执行递归的过程,就可以避免这些重复调用。在 Python 中,可以创建一个字典或列表来当作“备忘录”使用。

1

2

3

4

5

6

7

8

9

10

11

12

13

temp = {}  # 创建一个空字典,用来记录第i个斐波那契数列的值

def feibo_recur_temp(n):

    if n < 0:

        return "n小于0无意义"

    # n为0或1时返回1(前两个数为1)

    if n == 0 or n == 1:

        return 1

    if n in temp:  # 如果temp字典中有n,则直接返回值,不调用递归代码

        return temp[n]

    else:

        # 如果字典中还没有第n个斐波那契数,则递归计算并保存到字典中

        temp[n] = feibo_recur_temp(n-1) + feibo_recur_temp(n-2)

        return temp[n]

上面的代码中,创建了一个空字典用于存放每个 n 的执行结果。每次调用函数,都先查看字典中是否有记录,如果有记录就直接返回,没有记录就递归执行并将结果记录到字典中,再从字典中返回结果。这里的递归其实都只执行了一次计算,并没有真正的递归,如第一次传入 n 等于 5,执行 feibo_recur_temp(5),会递归执行 n 等于 4, 3, 2, 1, 0 的情况,每个 n 计算过一次后 temp 中都有了记录,后面都是直接到 temp 中取数相加。每个 n 都是从temp中取 n-1 和 n-2 的值来相加,执行一次计算,所以时间复杂度是 O(n) 。

下面看一下代码的运行时间。

1

2

3

4

5

6

for i in [10, 20, 30, 40, 41, 42, 43]:

    start = time.time()

    print(f'第{i}个斐波那契数:', feibo_recur_temp(i))

    end = time.time()

    print(f'n={i} Cost Time: ', end - start)

print(temp)

Output:

第10个斐波那契数: 89
n=10 Cost Time:  0.0
第20个斐波那契数: 10946
n=20 Cost Time:  0.0
第30个斐波那契数: 1346269
n=30 Cost Time:  0.0
第40个斐波那契数: 165580141
n=40 Cost Time:  0.0
第41个斐波那契数: 267914296
n=41 Cost Time:  0.0
第42个斐波那契数: 433494437
n=42 Cost Time:  0.0
第43个斐波那契数: 701408733
n=43 Cost Time:  0.0
{2: 2, 3: 3, 4: 5, 5: 8, 6: 13, 7: 21, 8: 34, 9: 55, 10: 89, 11: 144, 12: 233, 13: 377, 14: 610, 15: 987, 16: 1597, 17: 2584, 18: 4181, 19: 6765, 20: 10946, 21: 17711, 22: 28657, 23: 46368, 24: 75025, 25: 121393, 26: 196418, 27: 317811, 28: 514229, 29: 832040, 30: 1346269, 31: 2178309, 32: 3524578, 33: 5702887, 34: 9227465, 35: 14930352, 36: 24157817, 37: 39088169, 38: 63245986, 39: 102334155, 40: 165580141, 41: 267914296, 42: 433494437, 43: 701408733}

可以看到,代码运行时间全都降到小数点后很多位了(时间太小,只显示了 0.0 )。不过,temp 字典里记录了每个数对应的斐波那契数,这需要占用额外的内存空间,用空间换时间。

上面的代码也可以用列表来当“备忘录”,代码如下。

1

2

3

4

5

6

7

8

9

10

11

12

temp = [1, 1]

def feibo_recur_temp(n):

    if n < 0:

        return "n小于0无意义"

    if n == 0 or n == 1:

        return 1

    if n < len(temp):

        return temp[n]

    else:

        # 第一次执行时,将结果保存到列表中,后续直接从列表中取

        temp.append(feibo_recur_temp(n-1) + feibo_recur_temp(n-2))

        return temp[n]

现在,已经剖析了递归代码重复执行带来的时间复杂度问题,也给出了优化时间复杂度的方法,让我们将注意力转回到本文介绍的 @cache 装饰器。@cache 装饰器的作用是将函数的执行结果缓存,在下次以相同参数调用函数时直接返回上一次的结果,与上面的优化方式完全一致。

所以,只需要在递归函数上加 @cache 装饰器,递归的重复执行就可以解决,时间复杂度就能从 O(2^n) 降为 O(n) 。代码如下:

1

2

3

4

5

6

7

8

from functools import cache

@cache

def feibo_recur(n):

    if n < 0:

        return "n小于0无意义"

    if n == 0 or n == 1:

        return 1

    return feibo_recur(n-1) + feibo_recur(n-2)

代码比自己实现更加简洁优雅,并且每次使用时直接加上 @cache 装饰器就行,专注处理业务逻辑。下面看一下实际的运行时间。

1

2

3

4

5

for i in [10, 20, 30, 40, 41, 42, 43]:

    start = time.time()

    print(f'第{i}个斐波那契数:', feibo_recur(i))

    end = time.time()

    print(f'n={i} Cost Time: ', end - start)

Output:

第10个斐波那契数: 89
n=10 Cost Time:  0.0
第20个斐波那契数: 10946
n=20 Cost Time:  0.0
第30个斐波那契数: 1346269
n=30 Cost Time:  0.0
第40个斐波那契数: 165580141
n=40 Cost Time:  0.0
第41个斐波那契数: 267914296
n=41 Cost Time:  0.0
第42个斐波那契数: 433494437
n=42 Cost Time:  0.0
第43个斐波那契数: 701408733
n=43 Cost Time:  0.0

运行时间全都降到小数点后很多位了(只显示了 0.0 ),完美解决问题,非常精妙。以后遇到相似的情况,可以直接使用 @cache ,实现“记忆化”的缓存功能。

补充:Python @cache装饰器

@cache和@lru_cache(maxsize=None)可以用来寄存函数对已处理参数的结果,以便遇到相同参数可以直接给出答案。前者不限制存储的数量,后者通过maxsize限制存储的最大数量。

例:

1

2

3

4

@lru_cache(maxsize=None) # 等价于@cache

def test(a,b):

    print('开始计算a+b的值...')

    return a + b

可以用来做某些递归、动态规划。比如斐波那契数列的各项值从小到大输出。其实类似用数组保存前项的结果,都需要额外的空间。不过用装饰器可以省略额外空间代码,减少了出错的风险。

到此这篇关于Python中的@cache巧妙用法的文章就介绍到这了。

点击拿去
50G+学习视频教程
100+Python初阶、中阶、高阶电子书籍

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/431625.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spark 简介与原理

目录标题1 Spark 简介与原理1.1 Spark与Hadoop的区别1.2 Spark的应用场景1.3 Spark的作业运行流程1.4 Spark 2.X与Spark 1.X的区别1 Spark 简介与原理 Spark 是一个大规模数据处理的统一分析引擎。 具有迅速、通用、易用、支持多种资源管理器的特点。 Spark生态系统: Spark SQL…

双榜加冕!加速科技荣登2023准独角兽中国未来独角兽双榜单

4月10日至11日&#xff0c;由杭州市人民政府、民建浙江省委会、中国投资发展促进会主办的第7届万物生长大会在杭州国际博览中心隆重举行。会上&#xff0c;中国投资发展促进会创投专委会、杭州市创业投资协会联合微链共同发布2023杭州市独角兽&#xff08;准独角兽&#xff09;…

【高危】vm2 <3.9.16 沙箱逃逸漏洞(CVE-2023-29199)

漏洞描述 vm2 是一个基于 Node.js 的沙箱环境&#xff0c;可以使用列入白名单的 Node 内置模块运行不受信任的代码。 vm2 3.9.16之前版本中&#xff0c;由于transformer.js中transformer函数中异常处理逻辑不够完善&#xff0c;攻击者可通过制造异常绕过handleException()并造…

精通 TensorFlow 2.x 计算机视觉:第一部分

原文&#xff1a;Mastering Computer Vision with TensorFlow 2.x 协议&#xff1a;CC BY-NC-SA 4.0 译者&#xff1a;飞龙 本文来自【ApacheCN 深度学习 译文集】&#xff0c;采用译后编辑&#xff08;MTPE&#xff09;流程来尽可能提升效率。 不要担心自己的形象&#xff0c;…

Downie 4 4.6.14 MAC上最新最好用的一款视频下载工具

Downie for Mac 简介 Downie是Mac下一个简单的下载管理器&#xff0c;可以让您快速将不同的视频网站上的视频下载并保存到电脑磁盘里然后使用您的默认媒体播放器观看它们。 Downie 4 下载 Downie 4 for Mac Downie 4 for Mac软件特点 支持许多站点 -当前支持1000多个不同的…

printf里的格式控制符

%p&#xff1a;打印地址(指针地址)&#xff0c;十六进制形式输出&#xff0c;有多少位输出多少位&#xff0c;取决于是32 or 64位系统&#xff0c;如果输出不够位宽&#xff0c;左边补0。 &#xff05;f用来输出实数&#xff0c;以小数形式输出&#xff0c;默认情况下保留小数点…

自动化测试工程师需要具备什么技能?

如果是初入门的学习者&#xff0c;不建议拿一本书从头学&#xff0c;很可能会被里边一些专业术语和不常用的技术带偏&#xff0c;不论在公司还是在其他岗位上自学测试&#xff0c;都可以用自己搭建好的项目来练手&#xff08;如果在公司有现成的项目更好&#xff09;&#xff0…

提取图像特征方法总结 是那种很传统的方法~

目录 写在前面 一、SIFT&#xff08;尺度不变特征变换&#xff09; 1.SIFT特征提取的实质 2.SIFT特征提取的方法 3.SIFT特征提取的优点 4.SIFT特征提取的缺点 5.SIFT特征提取可以解决的问题&#xff1a; 二、HOG&#xff08;方向梯度直方图&#xff09; 1.HOG特征提取…

30岁软件测试,目前已失业4个月,迷茫不知该怎么办?

本人14年一本毕业&#xff0c;但是人特别懒&#xff0c;不爱学习&#xff0c;专业不好&#xff0c;毕业前都没找到合适工作&#xff0c;直接去创业了&#xff0c;奶茶店&#xff0c;托管&#xff0c;都弄过&#xff0c;也干过销售&#xff0c;反正浑浑噩噩度过了两年&#xff0…

CTFHub | 文件头检查

0x00 前言 CTFHub 专注网络安全、信息安全、白帽子技术的在线学习&#xff0c;实训平台。提供优质的赛事及学习服务&#xff0c;拥有完善的题目环境及配套 writeup &#xff0c;降低 CTF 学习入门门槛&#xff0c;快速帮助选手成长&#xff0c;跟随主流比赛潮流。 0x01 题目描述…

关于运行时内存数据区的一些扩展概念

栈顶缓存技术&#xff08;Top-of-Stack Cashing&#xff09; 前面提过&#xff0c;基于栈式架构的虚拟机所使用的零地址指令更加紧凑&#xff0c;但完成一项操作的时候必然需要使用更多的入栈和出栈指令&#xff0c;这同时也就意味着将需要更多的指令分派(instruction dispatc…

跨平台科学应用程序:QtiPlot 1.X Crack

QtiPlot 是一个用于数据分析和可视化的跨平台科学应用程序。由于其多语言支持&#xff0c;QtiPlot 被积极用于世界各地学术机构的教学。许多研究科学家信任 QtiPlot 来分析他们的数据并发布他们的工作结果。来自各个科学领域和行业的数千名注册用户已经选择了 QtiPlot 来帮助他…

Part-aware attention correctness for video salient object detection笔记总结

一、摘要 问题&#xff1a;在以往的VSOD中&#xff0c;一般主要是研究时空结构&#xff0c;利用隐式注意力模型去聚合相邻视频帧的互补信息。但很少有方法去关注跨视频帧的亲和力&#xff0c;即建立显式注意力图式去完成VSOD。 解决&#xff1a;提出一个新的注意力正确性策略去…

博客系统测试报告【可上线】

目录 1、测试概述 1.1、项目名称 1.2、测试时间 1.3、编写目的 1.4、测试范围 2、测试计划 2.1、测试用例 2.1.1、注册/登录模块 2.1.2、个人中心模块 2.1.3、找回密码模块 2.1.4、博客主列表模块 2.1.5、个人博客列表模块 2.1.6、个人草稿列表模块 2.1.7、博客详…

Elasticsearch:位置搜索介绍

在这个互联网和信息时代&#xff0c;在应用程序和应用程序中启用基于位置的搜索是一个普遍的要求。 基于位置的搜索根据邻近度获取场所或地点&#xff0c;例如附近的餐馆、半径不超过 1 公里的待售房屋等。 我们还使用基于位置的搜索来查找前往某个地方或兴趣点的方向。 好消息…

C#代码修改设计原图psd、ai格式图层文字内容等导出bmp等,需要license 要高额付费放弃

Update text is supported only in licensed mode System.ComponentModel.LicenseException HResult0x80131901 MessageUpdate text is supported only in licensed mode SourceAspose.PSD StackTrace: at  .(Object ) at  . () at  .(Object , UInt32 )…

【C++学习】类和对象--对象特性

构造函数和析构函数 对象的初始化和清理是两个非常重要的安全问题 一个对象或变量没有初始状态&#xff0c;对其使用后果是未知的 使用完一个对象或变量&#xff0c;没有及时清理&#xff0c;也会造成一定的安全问题 C利用构造函数和析构函数解决上述问题&#xff0c;这两个函数…

牛客竞赛字符串专题 NC237664 Typewriter(SAM + 树上倍增 + 二分 + 线段树优化dp)

本题主要考察了如何用 SAM 求原串每个前缀对应的能与非后缀匹配的最长后缀&#xff0c;以及如何求 SAM 每个节点 right 集合的 min / max。很有价值的一道串串题。 题意&#xff1a; 你有一台打字机&#xff0c;你需要用它打出一段只由小写字母构成的文本S。 设某个时刻&#…

java数据结构刷题二期

在 MATLAB 中&#xff0c;有一个非常有用的函数 reshape &#xff0c;它可以将一个 m x n 矩阵重塑为另一个大小不同&#xff08;r x c&#xff09;的新矩阵&#xff0c;但保留其原始数据。 给你一个由二维数组 mat 表示的 m x n 矩阵&#xff0c;以及两个正整数 r 和 c &…

考研数据结构--栈和队列

栈和队列 文章目录 栈和队列栈栈的定义&#xff08;特点&#xff09;栈的存储表示栈的基本操作栈的顺序存储方式和基本操作实现顺序栈的定义顺序栈的初始化顺序栈的判空顺序栈的判满顺序栈的进栈顺序栈的出栈取栈顶元素main函数测试 栈的链式存储方式和基本操作实现链栈的定义链…