数据结构与算法之手撕排序算法

news2025/1/22 16:04:47

前言

为什么要学习排序算法?
根据统计,早起大型机CPU资源的四分之一都花在了数据排序上面。排序算法作为最基础的算法,各种操作系统、编程语言都提供了内置的实现。既然排序实现随处可见,我们为什么还要自己动手实现呢?虽然经典算法要动手写写加深印象的道理都懂,但直到最近才发现,每种排序算法里都“暗藏玄机”。排序算法看似简单,其实不同的算法中蕴涵着经典的算法策略。通过熟练掌握排序算法,就可以掌握基本的算法设计思想,包括暴力枚举法、时间空间置换、子问题的分治以及随机化。

目录

一.排序的概念及其应用
二.排序分类
1.插入排序
2.选择排序
3.交换排序
4.归并排序

一.排序的概念及其应用

1.1排序的概念

排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍
在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。
内部排序:数据元素全部放在内存中的排序。
外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。

1.2排序运用

在这里插入图片描述

在这里插入图片描述

1.3 常见的排序算法

在这里插入图片描述

// 排序实现的接口
// 插入排序
void InsertSort(int* a, int n);
// 希尔排序
void ShellSort(int* a, int n);
// 选择排序
比特就业课
void SelectSort(int* a, int n);
// 堆排序
void AdjustDwon(int* a, int n, int root);
void HeapSort(int* a, int n);
// 冒泡排序
void BubbleSort(int* a, int n)
// 快速排序
void QuickSort(int* a, int left, int right);
// 归并排序
void MergeSort(int* a, int n)
// 测试排序的性能对比
void TestOP()
{
	srand(time(0));
	const int N = 100000;
	int* a1 = (int*)malloc(sizeof(int)*N);
	int* a2 = (int*)malloc(sizeof(int)*N);
	int* a3 = (int*)malloc(sizeof(int)*N);
	int* a4 = (int*)malloc(sizeof(int)*N);
	int* a5 = (int*)malloc(sizeof(int)*N);
	int* a6 = (int*)malloc(sizeof(int)*N);
	for (int i = 0; i < N; ++i)
	{
		a1[i] = rand();
		a2[i] = a1[i];
		a3[i] = a1[i];
		a4[i] = a1[i];
		a5[i] = a1[i];
		a6[i] = a1[i];
	}
	int begin1 = clock();
	InsertSort(a1, N);
	int end1 = clock();
	int begin2 = clock();
	ShellSort(a2, N);
	int end2 = clock();
	int begin3 = clock();
	SelectSort(a3, N);
	int end3 = clock();
	int begin4 = clock();
	HeapSort(a4, N);
	int end4 = clock();
	int begin5 = clock();
	QuickSort(a5, 0, N-1);
	int end5 = clock();
	int begin6 = clock();
	MergeSort(a6, N);
	int end6 = clock();
	printf("InsertSort:%d\n", end1 - begin1);
	printf("ShellSort:%d\n", end2 - begin2);
	printf("SelectSort:%d\n", end3 - begin3);
	printf("HeapSort:%d\n", end4 - begin4);
	printf("QuickSort:%d\n", end5 - begin5);
	printf("MergeSort:%d\n", end6 - begin6);
	free(a1);
	free(a2);
	free(a3);
	free(a4);
	free(a5);
	free(a6);
}

二.排序算法分类

1.插入排序

1.1基本思想:

直接插入排序是一种简单的插入排序法,其基本思想是:把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 。
实际中我们玩扑克牌时,就用了插入排序的思想
在这里插入图片描述

1.2直接插入排序:

当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,此时用array[i]的排序码与array[i-1],array[i-2],…的排序码顺序进行比较,找到插入位置即将array[i]插入,原来位置
上的元素顺序后移
在这里插入图片描述
直接插入排序的特性总结:

  1. 元素集合越接近有序,直接插入排序算法的时间效率越高
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1),它是一种稳定的排序算法
  4. 稳定性:稳定

代码实现:

打印数组中的元素的函数

// 假设都用升序来讲,降序就是反过来

void PrintArray(int* a, int n)
{
	for (int i = 0; i < n; ++i)
	{
		printf("%d ", a[i]);
	}
	printf("\n");
}
// 插入排序
// 时间复杂度是多少?O(N^2)
// 什么情况下最坏?逆序  1+2+3+...+n-1
// 什么情况下最好?顺序有序  O(N)
void InsertSort(int* a, int n)
{
	// [0, end]有序  end+1位置的值插入[0, end],让[0, end+1]有序
	for (int i = 0; i < n-1; ++i)
	{
		int end = i;
		int tmp = a[end + 1];
		while (end >= 0)
		{
			if (a[end] > tmp)
			{
				a[end + 1] = a[end];
				--end;
			}
			else
			{
				break;
			}
		}
		a[end + 1] = tmp;
	}
}

void TestInsertSort()
{
	int a[] = { 2,4,1,6,8,3,9,0,-1,9 };
	InsertSort(a, sizeof(a) / sizeof(int));
	printf("InsertSort: ");
	ArrayPrint(a, sizeof(a) / sizeof(int));
}

int main()
{
	TestInsertSort();
	//TestShellSort();
	//TestSelectSort();
	//TestHeapSort();
	//TestBubbleSort();
	//TestPartSort2();

	//TestOP()
	return 0;
}

运行结果:
在这里插入图片描述

1.3 希尔排序( 缩小增量排序 )

希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成个组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重
复上述分组和排序的工作。当到达=1时,所有记录在统一组内排好序。
在这里插入图片描述
希尔排序的特性总结:

  1. 希尔排序是对直接插入排序的优化。
  2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
  3. 希尔排序的时间复杂度不好计算,需要进行推导,推导出来平均时间复杂度: O(N1.3—N2)
  4. 稳定性:不稳定

代码实现:

// 直接插入排序的基础上的优化
// 1、先进行预排序,让数组接近有序
// 2、直接插入排序
// 时间复杂度:O(logN*N) 或者 O(log3N*N)
// 平均的时间复杂度是O(N^1.3)
void ShellSort(int* a, int n)
{
	int gap = n;

	while (gap > 1)
	{
		//gap = gap / 2;  // logN
		gap = gap / 3 + 1; // log3N 以3为底数的对数
		// gap > 1时都是预排序  接近有序
		// gap == 1时就是直接插入排序 有序

		// gap很大时,下面预排序时间复杂度O(N)
		// gap很小时,数组已经很接近有序了,这时差不多也是(N)

		// 把间隔为gap的多组数据同时排
		for (int i = 0; i < n - gap; ++i)
		{
			int end = i;
			int tmp = a[end + gap];
			while (end >= 0)
			{
				if (a[end] > tmp)
				{
					a[end + gap] = a[end];
					end -= gap;
				}
				else
				{
					break;
				}
			}
			a[end + gap] = tmp;
		}
	}	
}


//希尔排序测试
void TestShellSort()
{
	int a[] = { 2,4,1,6,8,3,9,0,-1,9 };
	ShellSort(a, sizeof(a) / sizeof(int));
	printf("ShellSort: ");
	ArrayPrint(a, sizeof(a) / sizeof(int));
}

int main()
{
	//TestInsertSort();
	TestShellSort();
	//TestSelectSort();
	//TestHeapSort();
	//TestBubbleSort();
	//TestPartSort2();

	//TestOP()
	return 0;
}

运行结果:
在这里插入图片描述

2选择排序

2.1基本思想:

每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。

2.2 直接选择排序:

在元素集合array[i]–array[n-1]中选择关键码最大(小)的数据元素
若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换
在剩余的array[i]–array[n-2](array[i+1]–array[n-1])集合中,重复上述步骤,直到集合剩余1个元素
在这里插入图片描述
直接选择排序的特性总结:

  1. 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1)
  4. 稳定性:不稳定

代码实现:

//交换函数
void Swap(int* p1, int* p2)
{
	int temp = *p1;
	*p1 = *p2;
	*p2 = temp;
}

// 选择排序
void SelectSort(int* a, int n)
{
	int start = 0;
	int end = n - 1;
	while (start < end)
	{
		int mini = start;
		int maxi = start;
		//找出数组中最大的数和最小的数
		for (int i = start; i <= end; i++)
		{
			if (a[i] < a[mini])
			{
				mini = i;
			}
			if (a[i] > a[maxi])
			{
				maxi = i;
			}
		}
		//把最小的数和start位置的数进行交换
		Swap(&a[start], &a[mini]);
		if (a[start] == a[maxi])
		{
			maxi = mini;
		}
		//把最大的数和end 位置的数交换
		Swap(&a[end], &a[maxi]);
		start++;
		end--;
	}
}

//直接选择排序测试
void TestSelectSort()
{
	int a[] = { 2,4,1,6,8,3,9,0,-1,9 };
	SelectSort(a, sizeof(a) / sizeof(int));
	printf("SelectSort: ");
	ArrayPrint(a, sizeof(a) / sizeof(int));
}
int main()
{
	//TestInsertSort();
	//TestShellSort();
	TestSelectSort();
	//TestHeapSort();
	//TestBubbleSort();
	//TestPartSort2();

	//TestOP()
	return 0;
}

运行结果:
在这里插入图片描述

2.3 堆排序

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。
在这里插入图片描述
堆排序的特性总结:

  1. 堆排序使用堆来选数,效率就高了很多。
  2. 时间复杂度:O(N*logN)
  3. 空间复杂度:O(1)
  4. 稳定性:不稳定

代码实现:

// 堆排序

//建堆
void AdjustDwon(int* a, int n, int root)
{
	int parent = root;
	//默认左孩子
	int child = parent * 2 + 1;
	while (child < n)
	{
		if (child + 1 < n && a[child] < a[child + 1])
		{
			child += 1;
		}

		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}
void HeapSort(int* a, int n)
{
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDwon(a, n, i);
	}
	int end = n - 1;
	while (end > 0)
	{
		//新堆中的最大数跟最后面那个数交换
		Swap(&a[0], &a[end]);
		AdjustDwon(a, end, 0);
		end--;
	}
}
//堆排序测试
void TestHeapSort()
{
	int a[] = { 2,4,1,6,8,3,9,0,-1,9 };
	HeapSort(a, sizeof(a) / sizeof(int));
	printf("HeapSort: ");
	ArrayPrint(a, sizeof(a) / sizeof(int));
}
int main()
{
	//TestInsertSort();
	//TestShellSort();
	//TestSelectSort();
	TestHeapSort();
	//TestBubbleSort();
	//TestPartSort2();

	//TestOP()
	return 0;
}

代码运行结果:
在这里插入图片描述

3. 交换排序

基本思想:所谓交换,就是根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置,交换排序的特点是:将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移
动。

3.1冒泡排序

在这里插入图片描述
冒泡排序的特性总结:

  1. 冒泡排序是一种非常容易理解的排序
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1)
  4. 稳定性:稳定

代码实现:

// 冒泡排序
// 时间复杂度:O(N*N)
// 最好情况:O(N)
// N-1
// N-2
// ...
// 跟直接插入排序相比?谁更好 -》 直接插入更好
void BubbleSort(int* a, int n)
{
	for (int j = 0; j < n; ++j)
	{
		int exchange = 0;
		for (int i = 1; i < n - j; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}

		if (exchange == 0)
		{
			break;
		}
	}
}

//冒泡排序测试
void TestBubbleSort()
{
	int a[] = { 2,4,1,6,8,3,9,0,-1,9 };
	BubbleSort(a, sizeof(a) / sizeof(int));
	printf("BubbleSort: ");
	ArrayPrint(a, sizeof(a) / sizeof(int));
}
int main()
{
	//TestInsertSort();
	//TestShellSort();
	//TestSelectSort();
	//TestHeapSort();
	TestBubbleSort();
	//TestPartSort2();

	//TestOP()
	return 0;
}

在这里插入图片描述

3.2 快速排序

快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。
将区间按照基准值划分为左右两半部分的常见方式有:
在这里插入图片描述
整体实现思想:
在这里插入图片描述
快速排序的特性总结:

  1. 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序
  2. 时间复杂度:O(N*logN)

在这里插入图片描述
3. 空间复杂度:O(logN)
4. 稳定性:不稳定

代码实现:

// 快速排序挖坑法
void PartSort2(int* a, int left, int right)
{
	if (left >= right)
		return;
	int start = left;
	int end = right;
	int pivot = start;
	int key = a[start];
	while (start < end)
	{
		//右边找比key小的数
		while (start < end && a[end] >= key)
		{
			end--;
		}
		//找到后放到坑里去
		a[pivot] = a[end];
		//原来位置变成坑
		pivot = end;
		//左边找比key小的数
		while (start < end && a[start] <= key)
		{
			start++;
		}
		//找到后放到坑里去
		a[pivot] = a[start];
		//原来位置变成坑
		pivot = start;

	}//以上是快排的单趟排序

	pivot = start;
	a[pivot] = key;
	//左子区间和右子区间有序,该序列就有序了,采用分治递归解决
	PartSort2(a, left, pivot - 1);
	PartSort2(a, pivot + 1, right);
}

//快速排序挖坑法测试
void TestPartSort2()
{
	int a[] = { 2,4,1,6,8,3,9,0,-1,9 };
	PartSort2(a, 0,sizeof(a)/sizeof(int)-1);
	printf("PartSort2: ");
	ArrayPrint(a, sizeof(a) / sizeof(int));
}

int main()
{
	//TestInsertSort();
	//TestShellSort();
	//TestSelectSort();
	//TestHeapSort();
	//TestBubbleSort();
	TestPartSort2();

	//TestOP()
	return 0;
}

代码运行结果:
在这里插入图片描述

4.归并排序

基本思想:
归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。 归并排序核心步骤:

在这里插入图片描述
在这里插入图片描述
归并排序的特性总结:

  1. 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
  2. 时间复杂度:O(N*logN)
  3. 空间复杂度:O(N)
  4. 稳定性:稳定

代码实现:

void _MergeSort(int* a, int left, int right, int* tmp)
{
	if (left >= right)
		return;

	int mid = (left + right) >> 1;
	// 假设 [left, mid] [mid+1, right]
	有序,那么我们就可以归并了
	_MergeSort(a, left, mid, tmp);
	_MergeSort(a, mid+1, right, tmp);

	// 归并
	int begin1 = left, end1 = mid;
	int begin2 = mid + 1, end2 = right;
	int index = left;
	while (begin1 <= end1 && begin2 <= end2)
	{
		if (a[begin1] < a[begin2])
		{
			tmp[index++] = a[begin1++];
		}
		else
		{
			tmp[index++] = a[begin2++];
		}
	}

	while (begin1 <= end1)
	{
		tmp[index++] = a[begin1++];
	}

	while (begin2 <= end2)
	{
		tmp[index++] = a[begin2++];
	}
	
	// 拷贝回去
	for (int i = left; i <= right; ++i)
	{
		a[i] = tmp[i];
	}
}

void MergeSort(int* a, int n)
{
	int* tmp = (int*)malloc(sizeof(int)*n);
	_MergeSort(a, 0, n - 1, tmp);
	free(tmp);
}

void TestMergeSort()
{
	int a[] = { 2,4,1,6,8,3,9,0,-1,9 };
	MergeSort(a, sizeof(a) / sizeof(int));
	PrintArray(a, sizeof(a) / sizeof(int));
}
int main()
{
	//TestOP();

	//TestShellSort();
	//TestHeapSort();
	//TestSelectSort();
	//TestBubbleSort();
	//TestPartSort2();
	TestMergeSort();

	return 0;
}

代码运行结果:
在这里插入图片描述

我们再来测试一下各个排序之间的性能:

// 测试排序的性能对比
void TestOP()
{
	srand(time(0));
	const int N = 1000000;
	int* a1 = (int*)malloc(sizeof(int) * N);
	int* a2 = (int*)malloc(sizeof(int) * N);
	int* a3 = (int*)malloc(sizeof(int) * N);
	int* a4 = (int*)malloc(sizeof(int) * N);
	int* a5 = (int*)malloc(sizeof(int) * N);
	int* a6 = (int*)malloc(sizeof(int) * N);
	int* a7 = (int*)malloc(sizeof(int) * N);

	for (int i = 0; i < N; ++i)
	{
		a1[i] = rand();
		//a1[i] = i;
		a2[i] = a1[i];
		a3[i] = a1[i];
		a4[i] = a1[i];
		a5[i] = a1[i];
		a6[i] = a1[i];
		a7[i] = a1[i];
	}

	int begin1 = clock();
	//InsertSort(a1, N);
	int end1 = clock();

	int begin2 = clock();
	ShellSort(a2, N);
	int end2 = clock();

	int begin3 = clock();
	//SelectSort(a3, N);
	int end3 = clock();

	int begin4 = clock();
	HeapSort(a4, N);
	int end4 = clock();

	int begin5 = clock();
	QuickSort(a5, 0, N - 1);
	//QuickSort(a4, 0, N - 1);
	int end5 = clock();

	int begin6 = clock();
	//MergeSort(a6, N);
	int end6 = clock();

	int begin7 = clock();
	//BubbleSort(a7, N);
	//BubbleSort(a4, N);
	int end7 = clock();

	printf("InsertSort:%d\n", end1 - begin1);
	printf("ShellSort:%d\n", end2 - begin2);
	printf("SelectSort:%d\n", end3 - begin3);
	printf("HeapSort:%d\n", end4 - begin4);
	printf("BubbleSort:%d\n", end7 - begin7);

	printf("QuickSort:%d\n", end5 - begin5);
	/*printf("MergeSort:%d\n", end6 - begin6);*/

	free(a1);
	free(a2);
	free(a3);
	free(a4);
	free(a5);
	free(a6);
	free(a7);

}

int main()
{
	TestOP();

	//TestShellSort();
	//TestHeapSort();
	//TestSelectSort();
	//TestBubbleSort();
	//TestQuickSort();
	//TestMergeSort();

	return 0;
}

各个排序算法测试对一百万个数排序所消耗的时间为:
在这里插入图片描述

5.排序算法复杂度及稳定性分析

在这里插入图片描述
总结:
各个排序算法有各个排序算法的不同使用场景,但是整体来说快排更有优势,所以快排更为常用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/430303.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

文章伪原创-文章伪原创工具

伪原创原理 文章伪原创的原理是将一篇原始文章进行修改、改写、调整或者替换一些词句等方式&#xff0c;生成与原始文章类似但又不完全相同的新文章。 文章伪原创的实现需要用到自然语言处理技术和相关的算法。具体的过程包括以下几个步骤&#xff1a; 分析原始文章&#xff…

YML是一种数据存储格式

读取yml配置信息 Value("${province}") private String province; Value("${user.sname}") private String name1; Value("${user1[1].name}") private String name; Value("${server.port}") private int port; server:port: 8099 #…

大数据现在找工作难么

大数据行业工作好找还是难找不是光靠嘴说出来的结合实际&#xff0c;看看市场上的招聘需求和岗位要求就大致知道了 要想符合企业用人规范&#xff0c;学历&#xff0c;工作经验&#xff0c;掌握技能都是非常重要的~ 先来看几个招聘网站的报告数据&#xff1a; Boss直聘发布的…

Linux应用编程(系统信息与系统资源)

在应用程序当中&#xff0c;有时往往需要去获取到一些系统相关的信息&#xff0c;譬如时间、日期、以及其它一些系统相关信息&#xff0c;本章将向大家介绍如何通过 Linux 系统调用或 C 库函数获取系统信息&#xff0c;譬如获取系统时间、日期以及设置系统时间、日期等&#xf…

java拦截器怎么实现

Java拦截器是一种对象拦截器&#xff0c;它可以拦截任何的类、方法和字段。拦截器还可以用于检查类是否已经加载以及对字段的访问权限是否符合规范。下面就让我们来了解一下 java拦截器怎么实现吧。 在 Java中&#xff0c;可以通过重写方法和代码块来实现拦截功能&#xff0c;但…

通俗讲解什么是Socket通讯

Socket通讯原理 1、什么是Socket&#xff1f; Socket&#xff0c;即套接字。就是两台主机之间逻辑连接的端点。&#xff08;通俗来说&#xff1a;网络上的两个程序通过一个双向的通信连接实现数据的交换&#xff0c;这个连接的一端称为一个socket&#xff09;。 Socket是一套…

【python】类和对象 | 一些混淆的知识点再复盘 | 魔术方法(特殊方法)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录前言一、魔术方法二、构造方法三、__ getitem __方法四、__ len __方法前言 参考视频&#xff1a;视频 一、魔术方法 首先看一看chatgpt对魔术方法&#xff08;特…

一图看懂 xlsxwriter 模块:用于创建 Excel .xlsx 文件, 资料整理+笔记(大全)

本文由 大侠(AhcaoZhu)原创&#xff0c;转载请声明。 链接: https://blog.csdn.net/Ahcao2008 一图看懂 xlsxwriter 模块&#xff1a;用于创建 Excel .xlsx 文件, 资料整理笔记&#xff08;大全&#xff09;摘要模块图类关系图模块全展开【xlsxwriter】统计常量模块1 xlsxwrite…

数据爬虫爬数据时常遇到的问题

第一&#xff0c;可能不能直接通过pyppeteer简单的直接page.querySelectorAll()获取所有元素然后直接 str(await (await element_songer_name.getProperty("title")).jsonValue()) 得到数据值&#xff0c;主要原因可能是#document问题&#xff0c; 所以遇到这个问题…

vue项目配置不同环境打包指令(vue-cli2、vue-cli3项目)

目录 一、vue-cli3项目&#xff1a;1、项目根目录创建环境文件2、 配置打包指令3、打包生成不同的dist文件夹 二、vue-cli2项目1、配置指令2.创建环境文件3、config/index.js中添加 三、遇到的问题1.vue-cli3项目配置打包指令&#xff0c;没有生成css文件--mode test2、vue-cli…

UE DTMqtt 虚幻引擎 Mqtt 客户端插件说明

目录 CreateMqttClient Connect Subscribe UnSubscribe Publish Disconnect BindConnectedDelegate BindConnectionLostDelegate BindMessageDelegate CreateMqttClient 创建一个Mqtt客户端对象 Connect 链接Mqtt服务器Subscribe 订阅消息频道UnSubscribe 取消订阅频道…

【go项目-geecache】动手写分布式缓存 - day3 - HTTP 服务端

收获总结&#xff1a; 了解go函数的可变参数的使用&#xff0c;还有切片展开的方式即…了解了HTTP通信方式&#xff0c;hinder的使用了解了go.mod &#xff0c;import 和modoule的使用 分布式缓存需要实现点对点的通信&#xff0c;我们可以使用HTTP来实现节点之间的通信&…

Linux·IO子系统和文件系统读写流程

目录 1.概述 2.linux IO子系统和文件系统读写流程 3.IO之流程与buffer概览 4.IO队列和IO调度 1.概述 分析一下写操作&#xff1a; char *buf malloc(MAX_BUF_SIZE); strncpy(buf, src, , MAX_BUF_SIZE); fwrite(buf, MAX_BUF_SIZE, 1, fp); fclose(fp); 以下图为例&…

九耶丨钛伦特-用深度学习实现垃圾图像分类(二)

3 构建模型 这里大家可以使用自己在项目 2 中寻找到的最好的模型结构&#xff0c;做为示例&#xff0c;这里以实验2-3 中的 snet 模型为基础&#xff0c;并进行细微的调整。 样例代码: 需要注意的是&#xff0c;我们在第一层卷基层之后增加了一层池化层&#xff0c;主要是为了降…

大数据技术之Spark

第1章 Spark概述 1.1 什么是Spark 回顾&#xff1a;Hadoop主要解决&#xff0c;海量数据的存储和海量数据的分析计算。 Spark是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。 Hadoop的Yarn框架比Spark框架诞生的晚&#xff0c;所以Spark自己也设计了一套资源调度…

30天学会《Streamlit》(1)

30学会《Streamlit》是一项编码挑战&#xff0c;旨在帮助您开始构建Streamlit应用程序。特别是&#xff0c;您将能够&#xff1a; 为构建Streamlit应用程序设置编码环境 构建您的第一个Streamlit应用程序 了解用于Streamlit应用程序的所有很棒的输入/输出小部件 第1天 - 建立…

Java面向对象高级【注解和反射】

目录 注解 什么是注解&#xff1f; 自定义注解 元注解 反射 什么是反射 静态语言和动态语言 动态语言 静态语言 对比 Class类 Java内存分析 类加载过程 类加载器 获取运行时类的完整结构 通过Class对象实例化对象 1.调用Class对象的newInstance 2.Constructor…

保姆级教程!如何在 Anolis 8 上构建基于 Nydus 和 Dragonfly 的镜像加速解决方案?

文/云原生 SIG 01 背景 镜像是容器技术的基础之一&#xff0c;在云原生场景下&#xff0c;业务的正常运作离不开对镜像的制作、分发和运行。当前的镜像在使用的过程中&#xff0c;需要将镜像从仓库中全量拉取到本地&#xff0c;再由容器 engine 进行解压&#xff0c;堆叠挂载…

【JUC进阶】详解synchronized锁升级

文章目录 1. synchronized概述2. synchronized 的实现原理2.1 Java对象组成2.2 Monitor2.3 从字节码角度看synchronized 3. 锁升级3.1 偏向锁3.2 轻量级锁 1. synchronized概述 synchronized是一个悲观锁&#xff0c;可以实现线程同步&#xff0c;在多线程的环境下&#xff0c…

信盈达CorexM4核心板STM32F407VGT6电路原理图\电源原理图\USB的工作原理\miniUSB的分类

一、电源部分电路 Micro_USB插座中的5V与GND就是直接提供VCC与GND&#xff0c;其中的D与D-是接在CH340芯片上的实现串口通信的数据口。 电源VCC通过一个自恢复保险丝接在一个自锁开关上,这样就分析完一个miniUSB的提供电源的原理图了。 在原理图的右上角有一个AMS1117-3.3的器件…