ROS--URDF集成Gazebo仿真小车和rviz结合

news2025/1/16 2:39:07

ROS–URDF集成Gazebo仿真小车
实现流程:

需要编写封装惯性矩阵算法的 xacro 文件

为机器人模型中的每一个 link 添加 collision 和 inertial 标签,并且重置颜色属性

在 launch 文件中启动 gazebo 并添加机器人模型

工作目录

在这里插入图片描述

1.编写封装惯性矩阵算法的 head.xacro 文件

<robot name="base" xmlns:xacro="http://wiki.ros.org/xacro">
    <!-- Macro for inertia matrix -->
    <xacro:macro name="sphere_inertial_matrix" params="m r">
        <inertial>
            <mass value="${m}" />
            <inertia ixx="${2*m*r*r/5}" ixy="0" ixz="0"
                iyy="${2*m*r*r/5}" iyz="0" 
                izz="${2*m*r*r/5}" />
        </inertial>
    </xacro:macro>

    <xacro:macro name="cylinder_inertial_matrix" params="m r h">
        <inertial>
            <mass value="${m}" />
            <inertia ixx="${m*(3*r*r+h*h)/12}" ixy = "0" ixz = "0"
                iyy="${m*(3*r*r+h*h)/12}" iyz = "0"
                izz="${m*r*r/2}" /> 
        </inertial>
    </xacro:macro>

    <xacro:macro name="Box_inertial_matrix" params="m l w h">
       <inertial>
               <mass value="${m}" />
               <inertia ixx="${m*(h*h + l*l)/12}" ixy = "0" ixz = "0"
                   iyy="${m*(w*w + l*l)/12}" iyz= "0"
                   izz="${m*(w*w + h*h)/12}" />
       </inertial>
   </xacro:macro>
</robot>

2.底盘 :semo02_date.urdf.xacro 文件

<!--
    使用 xacro 优化 URDF 版的小车底盘实现:

    实现思路:
    1.将一些常量、变量封装为 xacro:property
      比如:PI 值、小车底盘半径、离地间距、车轮半径、宽度 ....
    2.使用 宏 封装驱动轮以及支撑轮实现,调用相关宏生成驱动轮与支撑轮

-->
<!-- 根标签,必须声明 xmlns:xacro -->
<robot name="my_base" xmlns:xacro="http://www.ros.org/wiki/xacro">
    <!-- 封装变量、常量 -->
    <!-- PI 值设置精度需要高一些,否则后续车轮翻转量计算时,可能会出现肉眼不能察觉的车轮倾斜,从而导致模型抖动 -->
    <xacro:property name="PI" value="3.1415926"/>
    <!--:黑色设置 -->
    <material name="black">
        <color rgba="0.0 0.0 0.0 1.0" />
    </material>
    <!-- 底盘属性 -->
    <xacro:property name="base_footprint_radius" value="0.001" /> <!-- base_footprint 半径  -->
    <xacro:property name="base_link_radius" value="0.1" /> <!-- base_link 半径 -->
    <xacro:property name="base_link_length" value="0.08" /> <!-- base_link 长 -->
    <xacro:property name="earth_space" value="0.015" /> <!-- 离地间距 -->
    <xacro:property name="base_link_m" value="0.5" /> <!-- 质量  -->

    <!-- 底盘 -->
    <link name="base_footprint">
      <visual>
        <geometry>
          <sphere radius="${base_footprint_radius}" />
        </geometry>
      </visual>
    </link>

    <link name="base_link">
      <visual>
        <geometry>
          <cylinder radius="${base_link_radius}" length="${base_link_length}" />
        </geometry>
        <origin xyz="0 0 0" rpy="0 0 0" />
        <material name="yellow">
          <color rgba="0.5 0.3 0.0 0.5" />
        </material>
      </visual>
      <collision>
        <geometry>
          <cylinder radius="${base_link_radius}" length="${base_link_length}" />
        </geometry>
        <origin xyz="0 0 0" rpy="0 0 0" />
      </collision>
      <xacro:cylinder_inertial_matrix m="${base_link_m}" r="${base_link_radius}" h="${base_link_length}" />

    </link>


    <joint name="base_link2base_footprint" type="fixed">
      <parent link="base_footprint" />
      <child link="base_link" />
      <origin xyz="0 0 ${earth_space + base_link_length / 2 }" />
    </joint>
    <gazebo reference="base_link">
        <material>Gazebo/Yellow</material>
    </gazebo>

    <!-- 驱动轮 -->
    <!-- 驱动轮属性 -->
    <xacro:property name="wheel_radius" value="0.0325" /><!-- 半径 -->
    <xacro:property name="wheel_length" value="0.015" /><!-- 宽度 -->
    <xacro:property name="wheel_m" value="0.05" /> <!-- 质量  -->

    <!-- 驱动轮宏实现 -->
    <xacro:macro name="add_wheels" params="name flag">
      <link name="${name}_wheel">
        <visual>
          <geometry>
            <cylinder radius="${wheel_radius}" length="${wheel_length}" />
          </geometry>
          <origin xyz="0.0 0.0 0.0" rpy="${PI / 2} 0.0 0.0" />
          <material name="black" />
        </visual>
        <collision>
          <geometry>
            <cylinder radius="${wheel_radius}" length="${wheel_length}" />
          </geometry>
          <origin xyz="0.0 0.0 0.0" rpy="${PI / 2} 0.0 0.0" />
        </collision>
        <xacro:cylinder_inertial_matrix m="${wheel_m}" r="${wheel_radius}" h="${wheel_length}" />

      </link>

      <joint name="${name}_wheel2base_link" type="continuous">
        <parent link="base_link" />
        <child link="${name}_wheel" />
        <origin xyz="0 ${flag * base_link_radius} ${-(earth_space + base_link_length / 2 - wheel_radius) }" />
        <axis xyz="0 1 0" />
      </joint>

      <gazebo reference="${name}_wheel">
        <material>Gazebo/Red</material>
      </gazebo>

    </xacro:macro>
    <xacro:add_wheels name="left" flag="1" />
    <xacro:add_wheels name="right" flag="-1" />
    <!-- 支撑轮 -->
    <!-- 支撑轮属性 -->
    <xacro:property name="support_wheel_radius" value="0.0075" /> <!-- 支撑轮半径 -->
    <xacro:property name="support_wheel_m" value="0.03" /> <!-- 质量  -->

    <!-- 支撑轮宏 -->
    <xacro:macro name="add_support_wheel" params="name flag" >
      <link name="${name}_wheel">
        <visual>
            <geometry>
                <sphere radius="${support_wheel_radius}" />
            </geometry>
            <origin xyz="0 0 0" rpy="0 0 0" />
            <material name="black" />
        </visual>
        <collision>
            <geometry>
                <sphere radius="${support_wheel_radius}" />
            </geometry>
            <origin xyz="0 0 0" rpy="0 0 0" />
        </collision>
        <xacro:sphere_inertial_matrix m="${support_wheel_m}" r="${support_wheel_radius}" />
      </link>

      <joint name="${name}_wheel2base_link" type="continuous">
          <parent link="base_link" />
          <child link="${name}_wheel" />
          <origin xyz="${flag * (base_link_radius - support_wheel_radius)} 0 ${-(base_link_length / 2 + earth_space / 2)}" />
          <axis xyz="1 1 1" />
      </joint>
      <gazebo reference="${name}_wheel">
        <material>Gazebo/Red</material>
      </gazebo>
    </xacro:macro>

    <xacro:add_support_wheel name="front" flag="1" />
    <xacro:add_support_wheel name="back" flag="-1" />


</robot>

3:摄像头::semo03_date.urdf.xacro 文件

<!-- 摄像头相关的 xacro 文件 -->
<robot name="my_camera" xmlns:xacro="http://wiki.ros.org/xacro">
    <!-- 摄像头属性 -->
    <xacro:property name="camera_length" value="0.01" /> <!-- 摄像头长度(x) -->
    <xacro:property name="camera_width" value="0.025" /> <!-- 摄像头宽度(y) -->
    <xacro:property name="camera_height" value="0.025" /> <!-- 摄像头高度(z) -->
    <xacro:property name="camera_x" value="0.08" /> <!-- 摄像头安装的x坐标 -->
    <xacro:property name="camera_y" value="0.0" /> <!-- 摄像头安装的y坐标 -->
    <xacro:property name="camera_z" value="${base_link_length / 2 + camera_height / 2}" /> <!-- 摄像头安装的z坐标:底盘高度 / 2 + 摄像头高度 / 2  -->

    <xacro:property name="camera_m" value="0.01" /> <!-- 摄像头质量 -->

    <!-- 摄像头关节以及link -->
    <link name="camera">
        <visual>
            <geometry>
                <box size="${camera_length} ${camera_width} ${camera_height}" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
            <material name="black" />
        </visual>
        <collision>
            <geometry>
                <box size="${camera_length} ${camera_width} ${camera_height}" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
        </collision>
        <xacro:Box_inertial_matrix m="${camera_m}" l="${camera_length}" w="${camera_width}" h="${camera_height}" />
    </link>

    <joint name="camera2base_link" type="fixed">
        <parent link="base_link" />
        <child link="camera" />
        <origin xyz="${camera_x} ${camera_y} ${camera_z}" />
    </joint>
    <gazebo reference="camera">
        <material>Gazebo/Blue</material>
    </gazebo>
</robot>

4:雷达:semo_04_date.urdf.xacro文件

<!--
    小车底盘添加雷达
-->
<robot name="my_laser" xmlns:xacro="http://wiki.ros.org/xacro">

    <!-- 雷达支架 -->
    <xacro:property name="support_length" value="0.15" /> <!-- 支架长度 -->
    <xacro:property name="support_radius" value="0.01" /> <!-- 支架半径 -->
    <xacro:property name="support_x" value="0.0" /> <!-- 支架安装的x坐标 -->
    <xacro:property name="support_y" value="0.0" /> <!-- 支架安装的y坐标 -->
    <xacro:property name="support_z" value="${base_link_length / 2 + support_length / 2}" /> <!-- 支架安装的z坐标:底盘高度 / 2 + 支架高度 / 2  -->

    <xacro:property name="support_m" value="0.02" /> <!-- 支架质量 -->

    <link name="support">
        <visual>
            <geometry>
                <cylinder radius="${support_radius}" length="${support_length}" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
            <material name="red">
                <color rgba="0.8 0.2 0.0 0.8" />
            </material>
        </visual>

        <collision>
            <geometry>
                <cylinder radius="${support_radius}" length="${support_length}" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
        </collision>

        <xacro:cylinder_inertial_matrix m="${support_m}" r="${support_radius}" h="${support_length}" />

    </link>

    <joint name="support2base_link" type="fixed">
        <parent link="base_link" />
        <child link="support" />
        <origin xyz="${support_x} ${support_y} ${support_z}" />
    </joint>

    <gazebo reference="support">
        <material>Gazebo/White</material>
    </gazebo>

    <!-- 雷达属性 -->
    <xacro:property name="laser_length" value="0.05" /> <!-- 雷达长度 -->
    <xacro:property name="laser_radius" value="0.03" /> <!-- 雷达半径 -->
    <xacro:property name="laser_x" value="0.0" /> <!-- 雷达安装的x坐标 -->
    <xacro:property name="laser_y" value="0.0" /> <!-- 雷达安装的y坐标 -->
    <xacro:property name="laser_z" value="${support_length / 2 + laser_length / 2}" /> <!-- 雷达安装的z坐标:支架高度 / 2 + 雷达高度 / 2  -->

    <xacro:property name="laser_m" value="0.1" /> <!-- 雷达质量 -->

    <!-- 雷达关节以及link -->
    <link name="laser">
        <visual>
            <geometry>
                <cylinder radius="${laser_radius}" length="${laser_length}" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
            <material name="black" />
        </visual>
        <collision>
            <geometry>
                <cylinder radius="${laser_radius}" length="${laser_length}" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
        </collision>
        <xacro:cylinder_inertial_matrix m="${laser_m}" r="${laser_radius}" h="${laser_length}" />
    </link>

    <joint name="laser2support" type="fixed">
        <parent link="support" />
        <child link="laser" />
        <origin xyz="${laser_x} ${laser_y} ${laser_z}" />
    </joint>
    <gazebo reference="laser">
        <material>Gazebo/Black</material>
    </gazebo>
</robot>

5:创建运动控制实现系统:move.xacro

<robot name="my_car_move" xmlns:xacro="http://wiki.ros.org/xacro">

    <!-- 传动实现:用于连接控制器与关节 -->
    <xacro:macro name="joint_trans" params="joint_name">
        <!-- Transmission is important to link the joints and the controller -->
        <transmission name="${joint_name}_trans">
            <type>transmission_interface/SimpleTransmission</type>
            <joint name="${joint_name}">
                <hardwareInterface>hardware_interface/VelocityJointInterface</hardwareInterface>
            </joint>
            <actuator name="${joint_name}_motor">
                <hardwareInterface>hardware_interface/VelocityJointInterface</hardwareInterface>
                <mechanicalReduction>1</mechanicalReduction>
            </actuator>
        </transmission>
    </xacro:macro>

    <!-- 每一个驱动轮都需要配置传动装置 -->
    <xacro:joint_trans joint_name="left_wheel2base_link" />
    <xacro:joint_trans joint_name="right_wheel2base_link" />

    <!-- 控制器 -->
    <gazebo>
        <plugin name="differential_drive_controller" filename="libgazebo_ros_diff_drive.so">
            <rosDebugLevel>Debug</rosDebugLevel>
            <publishWheelTF>true</publishWheelTF>
            <robotNamespace>/</robotNamespace>
            <publishTf>1</publishTf>
            <publishWheelJointState>true</publishWheelJointState>
            <alwaysOn>true</alwaysOn>
            <updateRate>100.0</updateRate>
            <legacyMode>true</legacyMode>
            <leftJoint>left_wheel2base_link</leftJoint> <!-- 左轮 -->
            <rightJoint>right_wheel2base_link</rightJoint> <!-- 右轮 -->
            <wheelSeparation>${base_link_radius * 2}</wheelSeparation> <!-- 车轮间距 -->
            <wheelDiameter>${wheel_radius * 2}</wheelDiameter> <!-- 车轮直径 -->
            <broadcastTF>1</broadcastTF>
            <wheelTorque>30</wheelTorque>
            <wheelAcceleration>1.8</wheelAcceleration>
            <commandTopic>cmd_vel</commandTopic> <!-- 运动控制话题 -->
            <odometryFrame>odom</odometryFrame> <!-- 里程计坐标系 -->
            <odometryTopic>odom</odometryTopic> <!-- 里程计话题 -->
            <robotBaseFrame>base_footprint</robotBaseFrame> <!-- 根坐标系 -->
        </plugin>
    </gazebo>

</robot>

6:组合底盘、摄像头与雷达的 car.urdf.xacro 文件

<!-- 组合小车底盘与摄像头与雷达 -->
<robot name="my_car_camera" xmlns:xacro="http://wiki.ros.org/xacro">
    <xacro:include filename="head.xacro" />
    <xacro:include filename="semo02_date.urdf.xacro" />
    <xacro:include filename="semo03_date.urdf.xacro" />
    <xacro:include filename="semo_04_date.urdf.xacro" />
<!-- 运动控制 -->
    <xacro:include filename="gazebo/move.xacro" />
</robot>

7:创建demo_03.launch文件

<launch>

    <!-- 将 Urdf 文件的内容加载到参数服务器 -->
    <param name="robot_description" command="$(find xacro)/xacro  $(find urdf02_gazebo)/urdf/xacro/car.urdf.xacro" />

    <!-- 启动 gazebo -->
    <include file="$(find gazebo_ros)/launch/empty_world.launch" >
        <arg name="world_name" value="$(find urdf02_gazebo)/worlds/box_house.world"/>
    </include>

    <!-- 在 gazebo 中显示机器人模型 -->
    <node pkg="gazebo_ros" type="spawn_model" name="model" args="-urdf -model mycar -param robot_description"  />
</launch>

8:下载box_house.world文件

下载地址:https://github.com/zx595306686/sim_demo

9:创建rviz控制demo_04_sens.launch

<launch>
   
    <node pkg="rviz" type="rviz" name="rviz" args="-d $(find urdlee)/config/showmycar.rviz" />
    <node pkg="joint_state_publisher" type="joint_state_publisher" name="joint_state_publisher" output="screen" />
    <node pkg="robot_state_publisher" type="robot_state_publisher" name="robot_state_publisher" output="screen" />
   

</launch>

命令运行

source ./devel/setup.bash
roslaunch urdf02_gazebo demo_03.launch 
roslaunch urdf02_gazebo demo_04_sens.launch
rosrun teleop_twist_keyboard teleop_twist_keyboard.py 

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/428593.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【MySQL】B+树索引——InnoDB 中的索引方案;MylSAM 中的索引方案 和 InnoDB 中的索引方案 对比

一、InnoDB 中的索引方案 1. 聚簇索引 聚簇索引 有两个特点&#xff1a; 使用记录主键值的大小进行记录和页的排序&#xff0c;这包括3方面的含义. &#xff08;1&#xff09;页〈包括叶子节点和内节点〉内的记录按照主键的大小顺序排成一个单向链表&#xff0c;页内的记录被…

MongoDB 介绍和基本操作

一、MongoDB数据库 1、MongoDB是一种非关系型数据库&#xff0c;是用C语言编写的。其特点是高性能、易部署、易使用&#xff0c;存储数据方便。 2、MongoDB特点&#xff1a; 面向集合存储&#xff0c;易于存储对象类型数据&#xff1b;支持动态查询&#xff0c;支持完全索引&…

灌区量测水系统

1)灌区量测水 灌区量测水是水资源管理的基础&#xff0c;是推进节水农业和水价改革的重要手段。常规在主要水闸处&#xff0c;监测闸前和闸后水位及闸门开启状态(闸位)&#xff0c;通过实时监测数据&#xff0c;计算过闸流量。要实现全灌区水资源动态配置、精准灌溉&#xff0…

C语言小项目 -- 通讯录完整代码(登陆系统+动态开辟 + 文件操作)

目录 &#x1f4f0;0. 项目介绍 &#x1f4f0;1. 开发环境及框架 &#x1f4f0;2. 通讯录账户模块功能分析实现&#xff1a; &#x1f4f1;2.1 通讯录账户菜单界面及数据结构设计 &#x1f4f1;2.2 通讯录账户注册功能实现 &#x1f4f1;2.3 通讯录账户登录功能实现 &am…

完美解决丨 - [SyntaxError: invalid syntax](#SyntaxError-invalid-syntax)

目录 报错名称SyntaxError: invalid syntaxNameError: name xx is not definedIndentationError: expected an indented blockAttributeError: xx object has no attribute xxTypeError: xx object is not callableValueError: I/O operation on closed fileOSError: [Errno 2]…

目前的Android 市场怎么样?还好吗?

如今&#xff0c;随着互联网和移动设备的普及&#xff0c;Android 系统已成为全球最大的移动操作系统之一&#xff0c;成为最受欢迎的应用程序开发平台之一。作为一名 Android 开发者&#xff0c;我们生活中的大部分应用程序都是基于 Android 平台开发的&#xff0c;而我们的工…

从字节码分析String创建的几种方式

一.String a new String("a"); 1.到底会不会进入常量池 String a new String("a"); 通过idea中jclasslib插件获取到字节码 0 new #2 3 dup 4 ldc #3 <a> 6 invokespecial #4 <java/lang/String.<init> : (Ljava/lang/String;)V>9 as…

MongoDB 聚合管道中使用数组表达式运算符获取数组长度($size)和反转数组($reverseArray)

数组表达式运算符主要用于文档中数组的操作&#xff0c;本篇我们主要介绍如何使用数组表达式运算符获取数组的长度以及对数组中的数据进行反转&#xff1a; 一、准备数据 初始化成员数据 db.persons.insertMany([{ "_id" : "1001", "name" : …

go错误处理

func test() {num1 : 10num2 : 0result : num1 / num2fmt.Println("result", result)} func main() {test()for {fmt.Println("运行完毕&#xff01; main 下面的代码")time.Sleep(time.Second)}}在默认情况下&#xff0c;当发生错误后(panic) ,程序就会…

港联证券|揭秘涨停 旅游板块掀涨停潮

今天&#xff0c;A股三大股指低开低走。沪深两市收盘共38股涨停。剔除7只ST股&#xff0c;合计31股涨停。另外&#xff0c;14股封板未遂&#xff0c;整体封板率为73.08%。 涨停战场&#xff1a;6股封单资金超亿元 港联证券核算&#xff0c;从收盘涨停板封单量来看&#xff0c;…

【Pytorch】数据预处理

Pytorch是机器学习里面常用的框架之一&#xff0c;我们在学习机器学习之前最好需要学习如何使用这个框架对我们将要使用的数据数据进行预处理操作。 如果我们想要学习好pytorch里面的方法&#xff0c;我们需要常去用一下dir()和help()函数&#xff0c;它们一个会帮我们查看某个…

计算机软考考什么?怎么备考啊?

计算机软考是国家承认的计算机职业资格考试&#xff0c;是计算机行业从业者晋升职业等级的重要途径。计算机软考分为三个等级&#xff0c;分别是&#xff1a;初级、中级和高级。 备考计算机软考需要全面准备&#xff0c;下面我将从如何选择考试科目、如何制定学习计划、如何进…

【STL系列】unordered_set和unordered_map

前言 之前&#xff0c;我们介绍了STL中树形结构容器:set、map、multiset、multimap。 在C98中&#xff0c;STL提供了底层为红黑树结构的一系列关联式容器&#xff0c;在查询时的效率可达到O(logN)&#xff0c;即最差情况下需要比较红黑树的高度次&#xff0c;但当树中的结点非…

九龙证券|昨夜,大涨!蔚来5.99%,小鹏15.22%,理想6.39%

当地时间周一&#xff0c;美股三大指数低开高走&#xff0c;尾盘小幅收涨。盘面上&#xff0c;银行股、航空股遍及上涨。 展望本周&#xff0c;包括美联储理事沃勒、鲍曼等官员将迎来下月会议沉默期前的最终说话&#xff0c;投资者需关注其对经济和货币政策前景的看法。此外&am…

牛客网华为机考题库 C++

题目汇总HJ2 计算某字符出现次数HJ3 明明的随机数HJ4 字符串分隔HJ5 进制转换HJ6 质数因子HJ7 取近似值HJ8 合并表记录 哈希表HJ9 提取不重复的整数HJ10 字符个数统计HJ11 数字颠倒HJ12 字符串反转HJ13 句子逆序HJ14 字符串排序HJ15 求int型正整数在内存中存储时1的个数HJ16 购…

快速创建springboot+springcloud项目(nacos,seata,sentinel,gateway,openfeign)

一、创建一个maven项目 1.file->new->project 2.创建maven项目 3.删除src文件夹 4.在pom.xml文件中引入springboot和cloudAlibaba依赖 <dependencyManagement><dependencies><dependency><groupId>org.springframework.cloud</groupId>&l…

用Python解决Excel问题的最佳姿势

大家好&#xff0c;我是毕加锁。 今天给大家带来的是用Python解决Excel问题的最佳姿势 文末送书&#xff01; 文末送书&#xff01; 文末送书&#xff01; 「问题说明」 这次要处理的excel有两个sheet&#xff0c;要根据其中一个sheet的数据来计算另外一个sheet的值。造成问…

循环神经网络

循环神经网络(Recurrent Neural Network&#xff0c;RNN)与卷积神经网络一样,都是深度学习中的重要部分。循环神经网络可以看作一类具有短期记忆能力的神经网络。在循环神经网络中&#xff0c;神经元不但可以接收其他神经元的信息&#xff0c;也可以接收自身的信息&#xff0c;…

ChatGPT 速通手册——开始提问

开始提问 当我们完成注册后&#xff0c;页面自动会跳转到ChatGPT的主页面&#xff0c;在这里我们就可以开始进行对话了。 我们在页面下方的输入框中填写问题&#xff0c;然后回车或者点击小飞机&#xff0c;我们的问题和ChatGPT的答案就会在页面上方以一问一答的格式展现出来…

Packet Tracer 的安装过程

Packet Tracer 的安装过程 下载地址 链接&#xff1a;https://pan.baidu.com/s/1KO-vJ1p-miU7LXRH92hLww 提取码&#xff1a;ocwu 、双击运行 Crack 文件夹中的"Patch.exe"程序&#xff0c;点击 Patch&#xff1b; 7、即可看到显示激活成功&#xff0c;接下来打开…