Pytest自动化测试框架一些常见的插件

news2024/11/24 19:47:07

Pytest拥有丰富的插件架构,超过800个以上的外部插件和活跃的社区,在PyPI项目中以“ pytest- *”为标识。

本篇将列举github标星超过两百的一些插件进行实战演示。

插件库地址:http://plugincompat.herokuapp.com/


1、pytest-html:用于生成HTML报告

一次完整的测试,测试报告是必不可少的,但是pytest自身的测试结果过于简单,而pytest-html正好可以给你提供一份清晰报告。

安装:

pip install -U pytest-html

用例:

# test_sample.py
import pytest
# import time

# 被测功能
def add(x, y):
    # time.sleep(1)
    return x + y

# 测试类
class TestLearning:
    data = [
        [3, 4, 7],
        [-3, 4, 1],
        [3, -4, -1],
        [-3, -4, 7],
    ]
    @pytest.mark.parametrize("data", data)
    def test_add(self, data):
        assert add(data[0], data[1]) == data[2]

运行:

E:\workspace-py\Pytest>pytest test_sample.py --html=report/index.html
========================================================================== test session starts ==========================================================================
platform win32 -- Python 3.7.3, pytest-6.0.2, py-1.9.0, pluggy-0.13.0
rootdir: E:\workspace-py\Pytest
plugins: allure-pytest-2.8.18, cov-2.10.1, html-3.0.0, rerunfailures-9.1.1, xdist-2.1.0
collected 4 items                                                                                                                                                        

test_sample.py ...F                                                                                                                                                [100%]

=============================================================================== FAILURES ================================================================================
_____________________________________________________________________ TestLearning.test_add[data3] ______________________________________________________________________

self = <test_sample.TestLearning object at 0x00000000036B6AC8>, data = [-3, -4, 7]

    @pytest.mark.parametrize("data", data)
    def test_add(self, data):
>       assert add(data[0], data[1]) == data[2]
E       assert -7 == 7
E        +  where -7 = add(-3, -4)

test_sample.py:20: AssertionError
------------------------------------------------- generated html file: file://E:\workspace-py\Pytest\report\index.html --------------------------------------------------
======================================================================== short test summary info ========================================================================
FAILED test_sample.py::TestLearning::test_add[data3] - assert -7 == 7
====================================================================== 1 failed, 3 passed in 0.14s ======================================================================

运行完,会生产一个html文件 和 css样式文件夹assets,用浏览器打开html即可查看清晰的测试结果。

 

后面我将会更新更加清晰美观的测试报告插件: allure-python


2、pytest-cov:用于生成覆盖率报告

在做单元测试时,代码覆盖率常常被拿来作为衡量测试好坏的指标,甚至,用代码覆盖率来考核测试任务完成情况。

安装:

pip install -U pytest-cov

 运行:

E:\workspace-py\Pytest>pytest --cov=.
========================================================================== test session starts ==========================================================================
platform win32 -- Python 3.7.3, pytest-6.0.2, py-1.9.0, pluggy-0.13.0
rootdir: E:\workspace-py\Pytest
plugins: allure-pytest-2.8.18, cov-2.10.1, html-3.0.0, rerunfailures-9.1.1, xdist-2.1.0
collected 4 items                                                                                                                                                        

test_sample.py ....                                                                                                                                                [100%]

----------- coverage: platform win32, python 3.7.3-final-0 -----------
Name             Stmts   Miss  Cover
------------------------------------
conftest.py          5      3    40%
test_sample.py       7      0   100%
------------------------------------
TOTAL               12      3    75%


=========================================================================== 4 passed in 0.06s ===========================================================================


3、pytest-xdist:实现多线程、多平台执行

通过将测试发送到多个CPU来加速运行,可以使用-n NUMCPUS指定具体CPU数量,或者使用-n auto自动识别CPU数量并全部使用。

安装:

pip install -U pytest-xdist

用例:

# test_sample.py
import pytest
import time

# 被测功能
def add(x, y):
    time.sleep(3)
    return x + y

# 测试类
class TestAdd:
    def test_first(self):
        assert add(3, 4) == 7

    def test_second(self):
        assert add(-3, 4) == 1

    def test_three(self):
        assert add(3, -4) == -1

    def test_four(self):
        assert add(-3, -4) == 7
E:\workspace-py\Pytest>pytest test_sample.py
========================================================================== test session starts ==========================================================================
platform win32 -- Python 3.7.3, pytest-6.0.2, py-1.9.0, pluggy-0.13.0
rootdir: E:\workspace-py\Pytest
plugins: allure-pytest-2.8.18, cov-2.10.1, html-3.0.0, rerunfailures-9.1.1, xdist-2.1.0
collected 4 items                                                                                                                                                        

test_sample.py ....                                                                                                                                                [100%]

========================================================================== 4 passed in 12.05s ===========================================================================

E:\workspace-py\Pytest>pytest test_sample.py -n auto
========================================================================== test session starts ==========================================================================
platform win32 -- Python 3.7.3, pytest-6.0.2, py-1.9.0, pluggy-0.13.0
rootdir: E:\workspace-py\Pytest
plugins: allure-pytest-2.8.18, assume-2.3.3, cov-2.10.1, forked-1.3.0, html-3.0.0, rerunfailures-9.1.1, xdist-2.1.0
gw0 [4] / gw1 [4] / gw2 [4] / gw3 [4]
....                                                                                                                                                               [100%]
=========================================================================== 4 passed in 5.35s ===========================================================================

E:\workspace-py\Pytest>pytest test_sample.py -n 2
========================================================================== test session starts ==========================================================================
platform win32 -- Python 3.7.3, pytest-6.0.2, py-1.9.0, pluggy-0.13.0
rootdir: E:\workspace-py\Pytest
plugins: allure-pytest-2.8.18, assume-2.3.3, cov-2.10.1, forked-1.3.0, html-3.0.0, rerunfailures-9.1.1, xdist-2.1.0
gw0 [4] / gw1 [4]
....                                                                                                                                                               [100%]
=========================================================================== 4 passed in 7.65s ===========================================================================

上述分别进行了未开多并发、开启4个cpu、开启2个cpu,从运行耗时结果来看,很明显多并发可以大大缩减你的测试用例运行耗时。


4、pytest-rerunfailures:实现重新运行失败用例

 我们在测试时可能会出现一些间接性故障,比如接口测试遇到网络波动,web测试遇到个别插件刷新不及时等,这时重新运行则可以帮忙我们消除这些故障。

 安装:

pip install -U pytest-rerunfailures

运行:

E:\workspace-py\Pytest>pytest test_sample.py --reruns 3
========================================================================== test session starts ==========================================================================
platform win32 -- Python 3.7.3, pytest-6.0.2, py-1.9.0, pluggy-0.13.0
rootdir: E:\workspace-py\Pytest
plugins: allure-pytest-2.8.18, cov-2.10.1, html-3.0.0, rerunfailures-9.1.1, xdist-2.1.0
collected 4 items                                                                                                                                                        

test_sample.py ...R                                                                                                                                                [100%]R
 [100%]R [100%]F [100%]

=============================================================================== FAILURES ================================================================================
___________________________________________________________________________ TestAdd.test_four ___________________________________________________________________________

self = <test_sample.TestAdd object at 0x00000000045FBF98>

    def test_four(self):
>       assert add(-3, -4) == 7
E       assert -7 == 7
E        +  where -7 = add(-3, -4)

test_sample.py:22: AssertionError
======================================================================== short test summary info ========================================================================
FAILED test_sample.py::TestAdd::test_four - assert -7 == 7
================================================================= 1 failed, 3 passed, 3 rerun in 0.20s ==================================================================

如果你想设定重试间隔,可以使用 --rerun-delay 参数指定延迟时长(单位秒); 

如果你想重新运行指定错误,可以使用 --only-rerun 参数指定正则表达式匹配,并且可以使用多次来匹配多个。

pytest --reruns 5 --reruns-delay 1 --only-rerun AssertionError --only-rerun ValueError

如果你只想标记单个测试失败时自动重新运行,可以添加 pytest.mark.flaky() 并指定重试次数以及延迟间隔。

@pytest.mark.flaky(reruns=5, reruns_delay=2)
def test_example():
    import random
    assert random.choice([True, False])


5、pytest-randomly:实现随机排序测试

测试中的随机性非常越大越容易发现测试本身中隐藏的缺陷,并为你的系统提供更多的覆盖范围。

安装:

pip install -U pytest-randomly

运行:

E:\workspace-py\Pytest>pytest test_sample.py
========================================================================== test session starts ==========================================================================
platform win32 -- Python 3.7.3, pytest-6.0.2, py-1.9.0, pluggy-0.13.0
Using --randomly-seed=3687888105
rootdir: E:\workspace-py\Pytest
plugins: allure-pytest-2.8.18, cov-2.10.1, html-3.0.0, randomly-3.5.0, rerunfailures-9.1.1, xdist-2.1.0
collected 4 items                                                                                                                                                        

test_sample.py F...                                                                                                                                                [100%]

=============================================================================== FAILURES ================================================================================
___________________________________________________________________________ TestAdd.test_four ___________________________________________________________________________

self = <test_sample.TestAdd object at 0x000000000567AD68>

    def test_four(self):
>       assert add(-3, -4) == 7
E       assert -7 == 7
E        +  where -7 = add(-3, -4)

test_sample.py:22: AssertionError
======================================================================== short test summary info ========================================================================
FAILED test_sample.py::TestAdd::test_four - assert -7 == 7
====================================================================== 1 failed, 3 passed in 0.13s ======================================================================

E:\workspace-py\Pytest>pytest test_sample.py
========================================================================== test session starts ==========================================================================
platform win32 -- Python 3.7.3, pytest-6.0.2, py-1.9.0, pluggy-0.13.0
Using --randomly-seed=3064422675
rootdir: E:\workspace-py\Pytest
plugins: allure-pytest-2.8.18, assume-2.3.3, cov-2.10.1, forked-1.3.0, html-3.0.0, randomly-3.5.0, rerunfailures-9.1.1, xdist-2.1.0
collected 4 items                                                                                                                                                        

test_sample.py ...F                                                                                                                                                [100%]

=============================================================================== FAILURES ================================================================================
___________________________________________________________________________ TestAdd.test_four ___________________________________________________________________________

self = <test_sample.TestAdd object at 0x00000000145EA940>

    def test_four(self):
>       assert add(-3, -4) == 7
E       assert -7 == 7
E        +  where -7 = add(-3, -4)

test_sample.py:22: AssertionError
======================================================================== short test summary info ========================================================================
FAILED test_sample.py::TestAdd::test_four - assert -7 == 7
====================================================================== 1 failed, 3 passed in 0.12s ======================================================================

这功能默认情况下处于启用状态,但可以通过标志禁用(假如你并不需要这个模块,建议就不要安装)。

pytest -p no:randomly

如果你想指定随机顺序,可以通过 --randomly-send 参数来指定,也可以使用 last 值来指定沿用上次的运行顺序。

pytest --randomly-seed=4321
pytest --randomly-seed=last

6、其他活跃的插件

还有一些其他功能性比较活跃的、一些专门为个别框架所定制的、以及为了兼容其他测试框架,这里暂不做演示,我就简单的做个列举:

pytest-django:用于测试Django应用程序(Python Web框架)。

pytest-flask:用于测试Flask应用程序(Python Web框架)。

pytest-splinter:兼容Splinter Web自动化测试工具。

pytest-selenium:兼容Selenium Web自动化测试工具。

pytest-testinfra:测试由Salt,Ansible,Puppet, Chef等管理工具配置的服务器的实际状态。

pytest-mock:提供一个mock固件,创建虚拟的对象来实现测试中个别依赖点。

pytest-factoryboy:结合factoryboy工具用于生成各式各样的数据。

pytest-qt:提供为PyQt5和PySide2应用程序编写测试。

pytest-asyncio:用于使用pytest测试异步代码。

pytest-bdd:实现了Gherkin语言的子集,以实现自动化项目需求测试并促进行为驱动的开发。

pytest-watch:为pytest提供一套快捷CLI工具。

pytest-testmon:可以自动选择并重新执行仅受最近更改影响的测试。

pytest-assume:用于每个测试允许多次失败。

pytest-ordering:用于测试用例的排序功能。

pytest-sugar:可立即显示失败和错误并显示进度条。

pytest-dev/pytest-repeat:可以重复(可指定次数)执行单个或多个测试。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/426158.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

python机器学习决策树和SVM向量机算法实现红酒分类

1、红酒数据介绍 经典的红酒分类数据集是指UCI机器学习库中的Wine数据集。该数据集包含178个样本&#xff0c;每个样本有13个特征&#xff0c;可以用于分类任务。 具体每个字段的含义如下&#xff1a; alcohol&#xff1a;酒精含量百分比 malic_acid&#xff1a;苹果酸含量&a…

中科大ChatGPT学术镜像小白部署教程,全民都可以拥抱AI

docker…不会用…python不会用…服务器默认python版本3.6不会升级…代理也不会配置…各种命令不会用… 那么下面就是最简单办法&#xff0c;点点点即可【希望有帮助&#xff1f;】 文章目录一、体验镜像地址二、 基本配置2.1 config.py文件2.2 main.py文件三、下载项目四、项目…

FRP内网穿透配置

FRP内网穿透&#xff08;WIN&#xff09; 官方文档&#xff1a;点击进入 1.下载地址&#xff1a;点击进入 2.linux 压缩命令&#xff1a;tar -zxvf 包名&#xff0c;即可&#xff01; 3.linux配置服务端&#xff08;frps&#xff09; [common] bind_addr0.0.0.0 # frp监听的…

【NLP实战】基于Bert和双向LSTM的情感分类【下篇】

文章目录前言简介第一部分关于pytorch lightning保存模型的机制关于如何读取保存好的模型完善测试代码第二部分第一次训练出的模型的过拟合问题如何解决过拟合后记前言 本文涉及的代码全由博主自己完成&#xff0c;可以随意拿去做参考。如对代码有不懂的地方请联系博主。 博主…

TCP协议与UDP协议

1.TCP协议特点 1.1连接的建立与断开 TCP协议提供的是&#xff1a;面向连接、可靠的、字节流服务。使用TCP协议通信的双发必须先建立连接&#xff0c;然后才能开始数据的读写。双方都必须为该连接分配必要的内核资源&#xff0c;以管理连接的状态和连接上数据的传输。TCP连接是全…

从C语言到C++(第一章_C++入门_下篇)内联函数+auto关键字(C++11)+范围for +nullptr

目录 1. 内联函数 1.1 内联函数的概念 1.2 内联函数的特性 1.3 宏的优缺点和替代方法 2. auto关键字&#xff08;C11&#xff09; 2.1 改版前的auto 2.2 改版后的auto 2.3 auto 的使用场景 2.3.1处理很长的数据类型 2.3.2 auto 与指针结合起来使用&#xff1a; 2.4…

第2章 数据的类型

第2章 数据的类型 文章目录第2章 数据的类型2.2 为什么要进行区分2.3 结构化数据和非结构化数据案例&#xff1a;数据预处理字数/短语数特殊符号文本相对长度文本主题2.4 定量数据和定性数据2.4.1 案例&#xff1a;咖啡店数据2.4.2 案例&#xff1a;世界酒精消费量2.4.3 更深入…

4.18、TCP滑动窗口

4.18、TCP滑动窗口1.滑动窗口的介绍2.滑动窗口通信的例子1.滑动窗口的介绍 滑动窗口&#xff08;Sliding window&#xff09;是一种流量控制技术。早期的网络通信中&#xff0c;通信双方不会考虑网络的拥挤情况直接发送数据。由于大家不知道网络拥塞状况&#xff0c;同时发送数…

客户案例 | 迎接智能化浪潮,传统水厂数字化势在必行

关键发现 客户痛点&#xff1a;传统水厂业务离散&#xff0c;无法实现数据实时同步&#xff0c;为收集和分析处理数据并辅助决策带来障碍。需要智能化管理系统帮助水厂提升管理效率&#xff0c;优化管理流程&#xff0c;实现数字化、智能化的目标。 解决方案&#xff1a;天津腾…

你说你还不会Redis?别怕,今天带你搞定它!

Redis 前言 本文章是我学习过程中&#xff0c;不断总结而成&#xff0c;篇幅较长&#xff0c;可以根据选段阅读。 全篇17000字&#xff0c;图片 十三 张&#xff0c;预计用时1小时。 认识Redis 什么是Redis&#xff1f; 要使用一门技术&#xff0c;首先要知道这门技术是什…

pytorch进阶学习(三):在数据集数量不够时如何进行数据增强

对图片数据增强&#xff0c;可以对图片实现&#xff1a; 1. 尺寸放大缩小 2. 旋转&#xff08;任意角度&#xff0c;如45&#xff0c;90&#xff0c;180&#xff0c;270&#xff09; 3. 翻转&#xff08;水平翻转&#xff0c;垂直翻转&#xff09; 4. 明亮度改变&#xff08;变…

一零五五、mysql8.0高版本数据导入5.6低版本通解

背景 今日想将本机的mysql&#xff08;8.0&#xff09;中的数据库文件导出到远程服务器中的mysql&#xff08;5.6&#xff09;中&#xff0c;刚开始用source 一直报一大串ERROR&#xff0c;由于数据量比较大&#xff0c;那就直接用图形化工具导吧&#xff0c;连接上远程数据库&…

【常见CSS扫盲之渐变效果】好看的24种CSS渐变效果汇总(附源码)

【写在前面】web开发过程中&#xff0c;页面背景色想要一个渐变的效果很多时候网上一找全是官网那种很丑的色系&#xff0c;尤其是一些按钮和一些大背景色时候&#xff0c;不能搞得很yellow&#xff0c;今天我就做个工具人给大家罗列一些我在工作过程中总结的一些好看的渐变效果…

51单片机(8051系列)外部时钟

OUT&#xff08;输出引脚&#xff09;&#xff0c;IN&#xff08;输入引脚&#xff09;的区别 OUT(输出引脚) 输入引脚连接输入设备IN(输入引脚) 输出引脚连接输出设备外部时钟和内部时钟的区别 1、XTAL1和XTAL2引脚 内部时钟方式&#xff1a;必须在XTAL1和XTAL2引脚两端跨…

观早报 | 特斯拉储能超级工厂落沪;“华尔街之狼”募资550亿

今日要闻&#xff1a;京东拟今年发布千亿级产业大模型&#xff1b;特斯拉储能超级工厂落沪&#xff1b;“华尔街之狼”募资550亿&#xff1b;英特尔落户海南三亚&#xff1b;日本人要搞二次元老婆版 ChatGPT京东拟今年发布千亿级产业大模型 据《科创板日报》消息&#xff0c;京…

机器学习——L1范数充当正则项,让模型获得稀疏解,解决过拟合问题

问&#xff1a;使用L2范数正则项比L1范数正则项得到的是更为稀疏的解。 答&#xff1a;错误&#xff0c;L1范数正则项得到的是更稀疏的解。因为在L1正则项中&#xff0c;惩罚项是每个参数绝对值之和&#xff1b;而在L2正则项中&#xff0c;惩罚项是每个参数平方的和。L1正则项…

数字孪生智慧应急怎么实现?

根据国家对智慧应急建设的指示精神以及城市发展的迫切需求&#xff0c;智慧应急体系的建设应当从“大应急、大安全”的业务关切出发&#xff0c;聚焦“智慧应急”需求&#xff0c;融合对安全推进城市韧性建设的思考&#xff0c;将人工智能、物联网、大数据等高科技手段与应急救…

深度学习----DenseNet

1. 结构图 Input Shape : (3, 7, 7) — Output Shape : (2, 3, 3) — K : (3, 3) — P : (1, 1) — S : (2, 2) — D : (2, 2) — G : 1 The parts of this post will be divided according to the following arguments. These arguments can be found in the Pytorch documen…

STM32CubeMx+HAL库实现USB CDC+MSC复合设备

之前的文章中介绍过STM32的USB应用&#xff0c;包括虚拟串口&#xff08;CDC&#xff09;和大容量存储设备&#xff08;MSC&#xff09;。今天来介绍USB实现CDC和MSC复合设备的方法。 硬件&#xff1a;STM32F407VET6 软件&#xff1a;STM32CubeMx v6.5F4库v1.27.1 编译环境&a…

行内元素之间出现空白间隙及解决办法

这里的行内元素包括 display 为 inline 和 inline-block 的元素。 基本布局 <div class"container"><span class"item">1</span><span class"item">2</span><span class"item">3</span> …