Python | 基于LendingClub数据的分类预测研究Part01——问题重述+特征选择+算法对比

news2025/1/8 6:05:51

在这里插入图片描述
欢迎交流学习~~


专栏: 机器学习&深度学习


本文利用Python对数据集进行数据分析,并用多种机器学习算法进行分类预测。
具体文章和数据集可以见我所发布的资源:发布的资源


Python | 基于LendingClub数据的分类预测研究Part01——问题重述+特征选择+算法对比

  • 零、问题重述&背景介绍
    • 0.1 问题重述
    • 0.2 背景介绍
  • 一、不同特征对于预测结果差异的比较
    • 1.1 LR算法的介绍
    • 1.2 分类预测评价指标的介绍
    • 1.3 Lending Club的数据描述与分析
    • 1.4 特征选取与数据预处理
    • 1.5 建模分析与结果比较
  • 二、不同算法优劣的比较分析
    • 2.1 算法的介绍
      • 2.1.1 神经网络
      • 2.1.2 贝叶斯分类器
      • 2.2.2 决策树
    • 2.2 建模分析与结果比较
      • 2.2.1 神经网络
      • 2.2.2 贝叶斯分类器
      • 2.2.3 决策树
      • 2.2.4 三种算法优劣势总结

零、问题重述&背景介绍

0.1 问题重述

  • 问题一: 在数据集 lending-club 中筛选不同属性,确定至少三组对应训练集及测试集,选用同一种机器学习算法,训练不同数据集,并进行实验结果比较分析。可进行数据均衡化预处理。

  • 问题二: 选用不同的机器学习算法,对“多源数据”集完成分类预测(至少用三种机器学习算法实现,如支持向量机、神经网络、决策树等),并进行不同算法优劣的深入比较分析。可进行数据均衡化预处理。

  • 问题三: 扩展内容,可针对某种机器学习算法,进行算法优化改进等操作,在完成本题目的问题一和问题二要求之后,创新性进行算法实验。

0.2 背景介绍

近年来随着网络时代的迅速发展,互联网金融产品迅猛发展起来,并逐步改变人类的生活和储蓄方式,大型的借贷平台也逐渐兴起,LendingClub 是其中一家发展迅速、运作较好的大型P2P(Peer to Peer)交易平台,由于P2P平台交易门槛低、流程简单、投资回报率高等优势,迅速吸引了大批量客户进入市场,从中也衍生出了一些违规贷款和欺诈事件,所以本文以Lending Club 公司的部分批贷数据进行建模分析,通过 Logistic Regression(LR) 分类预测的方法进行风险评估,提高 P2P 平台关于违约率较高客户的识别能力,从而为该平台及公司提供科学决策依据。

此外,本文针对“多源数据”集,选取 3 种机器学习算法:神经网络,贝叶斯分类器和决策树,深入比较多种算法之间的运算效果,分析各种算法的优势和劣势。

最后,本文针对 Lending Club 的批贷数据集和相关算法进行深入研究,将原来的二分类问题,变为三分类问题。进一步,在使用决策树这种单一树类模型进行分类后, 也使用两种集成树类算法——随机森林和极端随机树模型,对数据进行预测分类。最终,综合三种算法,比较了它们的优势和劣势。

一、不同特征对于预测结果差异的比较

该部分本文在对 Lending Club 数据集进行初步数据分析的基础上,通过选取 4 组不同的特征,采用同一种算法(逻辑回归,LR)进行分类预测,比较 4 组模型结果参数的差异,选出其中相对最优的特征。

1.1 LR算法的介绍

逻辑回归(Logistic Regression, LR)采用线性的方式进行分类,有效地将回归问题与分类问题进行了结合。
考虑二分类任务,其输出标记 y ∈ { 0 , 1 } y\in \{0,1\} y{0,1},而线性回归模型产生的预测值 z = w T x + b z=w^{T}x+b z=wTx+b 是实值,于是,我们需将实值 w w w 转换为 0 / 1 0/1 0/1 值。最理想的是“单位跃迁函数”:
y = { 0 , z < 0 0.5 , z = 0 1 , z > 0 y = \begin{cases}0, z<0 \\ 0.5, z=0 \\ 1, z>0 \end{cases} y= 0,z<00.5,z=01,z>0

若预测值 z z z 大于零就判为正例,小于零则判为反例,预测值为临界值零则可以任意判别,但由于单位跃迁函数不连续,我们可以用对数几率函数:
y = 1 1 + e − z y=\frac{1}{1+e^{-z}} y=1+ez1

来代替单位跃迁函数。单位跃迁函数和对数几率函数如图1:
在这里插入图片描述
将逻辑回归的公式进行整理,我们可以得到:
log ⁡ p 1 − p = θ T x \log \frac{p}{{1 - p}} = {\theta ^T}x log1pp=θTx

其中, p = P ( y = 1 ∣ x ) p = P(y = 1|x) p=P(y=1∣x) ,也就是将给定输入 x x x 预测为正样本的概率。在自变量 x x x 和超参数 θ \theta θ 确定的情况下,逻辑回归可以看作广义线性模型(Generalized Linear Models)在因变量 y y y 服从二元分布时的一个特殊情况。本文主要利用 Logistic Regression 在处理二分类问题时简单高效的优势,对本文的 Lending Club 数据进行分类预测。

1.2 分类预测评价指标的介绍

对于二分类问题,主要采用 RecallPrecisionAccuracyF1-scoreP-R曲线ROC曲线AUC曲线 等指标进行评价,在评价时可依据混淆矩阵来进行:

  • 召回率(Recall):分类正确的正样本个数占真正的正样本个数的比例: R e c a l l = T P T P + F N Recall = \frac{{TP}}{{TP + FN}} Recall=TP+FNTP

  • 准确率(Precision):分类正确的正样本总数与分类器判别为正样本的样本总数的比例: P r e c i s i o n = T P T P + F P Precision = \frac{{TP}}{{TP + FP}} Precision=TP+FPTP

  • F1-score:召回率和准确率的调和平均值,可以综合反应模型的性能: F 1 − s c o r e = 2 ⋅ R e c a l l ⋅ P r e c i s i o n R e c a l l + Pr ⁡ e c i s i o n F1 - score = \frac{{2 \cdot Recall \cdot Precision}}{{{\mathop{\rm Re}\nolimits} call + \Pr ecision}} F1score=Recall+Precision2RecallPrecision

  • P-R曲线:一个综合的图形指标,用来衡量分类模型的拟合效果,图形中横轴是 Recall 值,纵轴是 Precision 值。

  • 正确率(Accuracy):分类正确的样本个数占总样本个数的比例: A c c u r a c y = T P + T N T P + F P + T N + F N Accuracy = \frac{{TP + TN}}{{TP + FP + TN + FN}} Accuracy=TP+FP+TN+FNTP+TN

  • ROC 曲线:ROC 曲线的横坐标为假阳性率(False Positive Rate, FPR),纵坐标为真阳性率(True Positive Rate, TPR)所构成的曲线。其中 F P R = F P N FPR = \frac{{FP}}{N} FPR=NFP T P R = T P P TPR = \frac{{TP}}{P} TPR=PTP .

  • AUC:是 ROC 曲线下的面积大小,该值能够量化反映出基于 ROC 曲线的模型性能,AUC 值为沿着 ROC 曲线横轴的积分值,其值越接近于 1,模型效果越好。

对于上述公式中字符的含义,可以用如下的二分类混淆矩阵表示:
在这里插入图片描述

1.3 Lending Club的数据描述与分析

本文数据是 Lending Club 公司对一段时间内贷款客户信息的整理,原始数据包含 77159 个样本,108 维特征,特征数据包含整型、浮点型、类别型和字符型的数据。预测变量为客户的贷款状态,包含的取值有:’Fully Paid’’Current’’Charged Off’’Late (31-120 days)’’In Grace Period’’Late (16-30 days)’’Default’,由于本文主要是为了识别违约客户,所以这里将 ’Fully Paid’’Current’ 视为正常客户,标记为 0,其他情况的 ’Charged Off’’Late (31-120 days)’’In Grace Period’’Late (16-30 days)’’Default’ 视为违约客户,标记为 1.

接下来,本文针对客户的贷款状态以及某些特征进行初步数据分析:表2为正常客户和违约客户的统计信息,图2为不同贷款状态(loan_status)的客户数量统计图:

在这里插入图片描述

在这里插入图片描述

图3为贷款额度(loan_amnt)和贷款状态(loan_status)的箱型图,可以发现,随着贷款状况的下降,贷款额度呈现轻微上升趋势,可以猜测,二者有着一定的联系。
在这里插入图片描述

图4为不同信用等级(grade)的违约客户占比,可以看出随着信用等级由 AF 降低,违约客户的占比越来越高,而 G 等级的违约客户占比较低,可能的原因是贷款公司对信用等级为 G 等级的用户审核条件更加严格。

在这里插入图片描述

图5为不同总还款月份(term)的违约客户占比,可以看出:总还款月份为 60 个月的违约客户占比明显高于 36 个月的违约客户占比。推测可能的原因是前者的还款压力更大,工作不确定性也更大。

在这里插入图片描述

图6为贷款人年收入与贷款状态的箱线图,图中并未显示出两者之间存在着强相关关系。

在这里插入图片描述

1.4 特征选取与数据预处理

在上述数据的描述与分析的基础上,我们选取如下4组特征进行分析(表3):
在这里插入图片描述

其中, loan_amnt为贷款金额,为连续型变量;grade 为信用等级,为类别变量;term 为总还款月份,为类别变量;annual_inc 为贷款人年收入,为连续型变量。

对于所选的特征,经过数据分析,不存在缺失值情况。而对于不同数据类型的特征,我们要采取不同的预处理方法:

  • 类别变量 gradeterm
    变量 中的 AG 等级,分别标为 06;变量 中的 ’36 months’ 标为 0’60 months’ 标为 1.
  • 连续型变量 loan_amntannual_inc
    两者中的数据都进行标准化处理。

1.5 建模分析与结果比较

对于模型的建立与运算,我们要用到 python 中的numpypandassklearn 等包。对于数据集,我们都将其中的 80% 作为训练集,20% 作为测试集,绘制 4 个数据集模型对应的 ROC 曲线,如图7:

在这里插入图片描述

从图中我们可以看到,第2,3,4组的AUC值无明显差异,且显著高于第1组的值。
并得到各自的模型评价参数如下(表4):

在这里插入图片描述

根据表中显示的不同分组的模型评价参数,我们可以发现:第3组的 RecallPrecisionF1-scoreAccuracy 都是最大的,因此我们我们可以认为第3组选择的特征:loan_amntannual_incterm 对于违约客户的分类预测是相对最优的。

二、不同算法优劣的比较分析

该部分本文基于对“多源数据集”的分析,采用 3 种不同的机器学习算法:神经网络,贝叶斯分类器和决策树,对数据进行分类预测,并比较它们的模型评价参数,分析各个算法的优势和劣势。

2.1 算法的介绍

2.1.1 神经网络

人工神经元网络是对生物神经网络的一种模拟与近似,是由大量神经元通过相互连接而构成的自适应非线性动态网络系统。从提出的神经元第一个模型——MP模型,到单层感知器模型,再到提出一种按误差逆传播算法训练的多层前馈网络——反向传播网络(BP 网络)。

神经网络模型已经发展出多种形式,包括:卷积神经元(CNN),循环神经元(RC),长短期记忆神经元(LSTM),门控循环神经元(GRU),前馈神经网络(FFNN),径向基神经网络(RBF),霍普菲尔网络(HN)等。

如图8为一些神经网络图示:

在这里插入图片描述

2.1.2 贝叶斯分类器

贝叶斯分类器(Bayes法)是一种在已知先验概率与类条件概率的情况下的模式分类方法,待分类的分类结果取决于类域中样本的全体。

设训练样本集分为 M 类,记为 C = { c 1 , c 2 , . . . , c M } C = \{ {c_1},{c_2},...,{c_M}\} C={c1,c2,...,cM},每类的先验概率为 P ( c i ) P({c_i}) P(ci),当样本集非常大时,可以认为 P ( c i ) = n ( c i ) n P({c_i}) = \frac{{n({c_i})}}{n} P(ci)=nn(ci),其中 n ( c i ) n({c_i}) n(ci) c i {c_i} ci 类的样本数, n n n 为总样本数。对于一个待分类样本 X X X,其归类为 c i c_{i} ci类的类条件概率为 P ( X ∣ c i ) P(X|{c_i}) P(Xci),根据Bayes定理,可得到后验概率为 P ( c i ∣ X ) P({c_i}|X) P(ciX)
P ( c i ∣ X ) = P ( X ∣ c i ) P ( c i ) P ( X ) P({c_i}|X) = P(X|{c_i})\frac{{P({c_i})}}{{P(X)}} P(ciX)=P(Xci)P(X)P(ci)

若有 P ( c i ∣ X ) = max ⁡ { P ( c j ∣ X ) } , j = 1 , 2 , . . . , M P({c_i}|X) = \max \{ P({c_j}|X)\} ,j = 1,2,...,M P(ciX)=max{P(cjX)},j=1,2,...,M,则有 X ∈ c i X \in {c_i} Xci,这就是最大后验概率判别准则,也是常用的Bayes分类判决准则。经过长期的研究,Bayes分类方法在理论上论证得比较充分,在应用上也是非常广泛的。

2.2.2 决策树

决策树可看作一个树状预测模型,它通过把实例从根节点排列到某个叶子节点来分类实例,叶子结点即为实例所属的分类。决策树的核心问题是选择分裂属性和决策树的剪枝。

决策树的算法有很多,有 ID3C45CART 等等。这些算法均采用自顶向下的贪婪算法,每个节点选择分类效果最好的属性将节点分裂为 2 个或多个子结点,继续这一过程知道这棵树能准确地分类训练集,或所有属性都已经被使用过。

图9是用决策树判断是否能偿还贷款的实例原理图示:

在这里插入图片描述

2.2 建模分析与结果比较

由于“多源数据集”中已经给出处理之后的“编码多源数据集”,因此该部分我们直接对编码多源数据集进行预处理。而对于多分类情况,我们除了1.3中提到的预处理方法,我们也可以将标签进行二值化处理(表5):
在这里插入图片描述
对于模型的建立与运算,我们要用到 python 中的 numpypandassklearn等包。对于数据集,我们都将其中的 80% 作为训练集,20% 作为测试集。之后,我们采用三种机器学习算法建立模型,并统计各种算法的性能:

2.2.1 神经网络

本文根据经验公式:
λ = m + n + α \lambda = \sqrt {m + n} + \alpha λ=m+n +α
设置隐含层节点数目,其中 λ \lambda λ 为隐含层节点数, m m m 为输入层节点数目,对于该数据集为 26 n n n 为输出层结点数,为 5, 为 1~10的常数,这里设为 4,最终计算结果四舍五入,得到 λ = 10 \lambda=10 λ=10.

表6为采用神经网络的模型结果参数:

在这里插入图片描述

其中, 表示算法运行总时长,单位为秒(s).

图10是神经网络模型的 P-R 曲线图,其中类别 012 的准确率随着召回率的提高而上升,类别3的准确率却维持在 0,类别 4 的准确率一直维持在较高水平,总体的平均准确率也一直维持在较高水平。

在这里插入图片描述

2.2.2 贝叶斯分类器

表7为采用贝叶斯分类器的模型结果参数:

在这里插入图片描述

图11是贝叶斯分类器模型的 P-R 曲线图,类别 0 的准确率随着召回率的上升而快速下降,类别 123 的准确率一直维持在较低水平,类别 4 的准确率一直处于较高水平,而总体平均准确率随着召回率提高而不断提高。
在这里插入图片描述

2.2.3 决策树

表8为采用决策树的模型结果参数:

在这里插入图片描述

图12是决策树模型的P-R曲线图,模型中各类的准确率都随着召回率的提高而下降,下降速度不同,但是总体平均准确率也一直维持在较高水平。
在这里插入图片描述

2.2.4 三种算法优劣势总结

神经网络模型的召回率(Recall),准确率(Precision)和 F1-score 都高于贝叶斯分类器,但是模型运行时间过长。

贝叶斯分类器的召回率(Recall),准确率(Precision)和 F1-score 都较低,但是其模型运行时间是三者最短的。

决策树的召回率(Recall),准确率(Precision)和F1-score 都是三者最高的,而且相比于神经网络,其运行时间也显著偏低。

综合三种算法,决策树模型的准确度和泛化能力最优,且相比于贝叶斯分类的运行时间,决策树的运行时间也属于可接受范围内,因此我们可以认为,三者之间决策树模型最优。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/421622.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

多路I/O转接 Epoll

基本概述 epoll是Linux下多路复用IO接口select/poll的增强版本&#xff0c;它能显著提高程序在大量并发连接中只有少量活跃的情况下的系统CPU利用率&#xff0c;因为它会复用文件描述符集合来传递结果而不用迫使开发者每次等待事件之前都必须重新准备要被监听的文件描述符集合…

从输入url到页面展现(二)找服务器其实是在找IP地址

前言 前一节我们讲述了url的规则&#xff0c;url的几种类型&#xff0c;以及访问web服务器的时候&#xff0c;如果用户访问的url如果不包含index.html的话&#xff0c;大概会如何去寻找这个url对应的文件&#xff0c;如果感兴趣的同学可以回头去看上一篇&#xff1a;从输入url…

PyTorch中的可视化工具

目录 一、网络结构的可视化 1.1 通过HiddenLayer可视化网络 1.2 通过PyTorchViz可视化网络 二、训练过程可视化 2.1 通过tensorboardX可视化训练过程 2.2 HiddenLayer可视化训练过程 三、使用Visdom进行可视化 一、网络结构的可视化 我们训练神经网络时&#xff0c;除…

xshell是什么软件

xshell是什么软件? Xshell 是一个强大的远程管理软件&#xff0c;它支持SSH&#xff0c;TELNET 协议。Xshell可以在Windows下访问远端服务器、路由器、网络机顶盒等&#xff0c;类似的常用软件还有putty&#xff0c;以及Windows下的Telnet。 下面简单介绍一下xshell软件。 X…

康耐视Designer,通过VC5与三菱Q系列PLC-SLMP通讯说明

测试使用软件版本 Designer Version: 2.7 GX Works2 Version: 1.77F 测试使用硬件 Cognex Vision Controller VC5 CIC-5000R Mitsubishi PLC: Q06UDEHCPU PLC端设置(内置以太网口型号) 1.新建一个工程,选择对应的PLC系列和PLC类型: 2.PLC参数设置(以太网设置):…

LabVIEW-数值控件和布尔控件

简介 LabVIEW 以其强大、开放、图形化的虚拟仪器软件开发环境使得无论是否有过编程经验的工程师或科学家使用它时都可以快速、高效地与测量和控制硬件通信&#xff0c;并进行复杂的数据分析及处理。LabVIEW集成了满足GPIB、PXI、VXI、RS232、RS485、USB、DAQ等多种形式的设备互…

MATLAB算法实战应用案例精讲-【自动驾驶】激光雷达LiDAR(补充篇)

目录 前言 几个高频面试题目 自动驾驶中的传感器&#xff1a;LiDAR和 Radar的区别 LiDAR Radar 性能对比 激光雷达中是如何做到和GPS时间同步的&#xff1f; 一、三种方案PPSGPRMC、PTP、gPTP 二、同步过程 算法原理 发展历程 国内外厂商 算法思想 测距 三角测…

【博学谷学习记录】超强总结,用心分享丨人工智能 AI项目 前向概率计算笔记

目录前向概率模型基础参数公式推导代码实现前向概率 给定隐马尔可夫模型λ\lambdaλ&#xff0c;定义到时刻ttt部分观测序列为o1,o2,⋯,oto_1,o_2,\cdots,o_to1​,o2​,⋯,ot​且状态为sis_isi​的概率为前向概率&#xff0c;记作αt(i)P(o1,o2,⋯,ot,itsi∣λ)\alpha_t(i)P(o…

GDPU C语言 天码行空9

填空题 1. 指针排序 数组 输入 n5 30 85 12 77 6输出 6 12 30 77 85 &#x1f920; 代码 #include<stdio.h>#define N 10void sort(int *x,int n)// *x 是 数组 a 的地址 {int i,j,k,t;for(i0;i<n-1;i)//从前往后枚举 坑位{ki; for(ji1;j<n;j) if(x[k…

计算机网络 实验五

⭐计网实验专栏&#xff0c;欢迎订阅与关注&#xff01; ★观前提示&#xff1a;本篇内容为计算机网络实验。内容可能会不符合每个人实验的要求&#xff0c;因此以下内容建议仅做思路参考。 一、实验目的 理解DNS的域名解析机制&#xff0c;理解DHCP的工作机制熟悉WEB应用及超…

逍遥自在学C语言 | 位运算符>>的高级用法

前言 在上一篇文章中&#xff0c;我们介绍了<<运算符的高级用法&#xff0c;本篇文章&#xff0c;我们将介绍>> 运算符的一些高级用法。 一、人物简介 第一位闪亮登场&#xff0c;有请今后会一直教我们C语言的老师 —— 自在。 第二位上场的是和我们一起学习的小…

HCIP-6.8BGP的团体属性、BGP联盟

BGP的团体属性、BGP联盟1、Community:团体属性1.1、案例配置2、BGP联盟属性2.1、配置案例&#xff1a;2.2、四种类型的AS_PATH&#xff1a;对于大型网络或者路由条目较多&#xff0c;使用一种BGP特有的路由标记&#xff0c;用于简化路由策略的执行。对于减少路由条目&#xff0…

unity,制作一个环状滑动条

介绍 unity&#xff0c;制作一个环状滑动条 方法 1.导入png图片素材2.新建一个滑动条&#xff0c;两者图片都设置为图片3.调节slider的参数4.调节backgroud的参数5.fill area、fill的参数同上。 得到两个叠加的圆环。6.设置fill的背景颜色为红色7.设置fill填充方式&#xff0…

【C++】容器适配器之priority_queue 仿函数

一、priority_queue 的介绍和使用 1.priority_queue 的介绍 我们和学习之前的容器一样&#xff0c;可以使用cplusplus官网进行学习&#xff1a;priority_queue文档介绍 priority_queue(优先级队列)是一种容器适配器&#xff0c;它 和queue使用同一个头文件&#xff0c;其底层…

Elastic(ELK) Stack 架构师成长路径

Elastic Stack&#xff08;ELK Stack&#xff09;是一个开源的日志分析平台&#xff0c;由 Elasticsearch、Logstash 和 Kibana 三个组件组成&#xff0c;主要用于数据搜索、分析和可视化。要成为一名 ELK Stack 架构师&#xff0c;需要遵循一定的成长路径&#xff0c;以便逐步…

详解HiveSQL执行计划

一、前言 Hive SQL的执行计划描述SQL实际执行的整体轮廓&#xff0c;通过执行计划能了解SQL程序在转换成相应计算引擎的执行逻辑&#xff0c;掌握了执行逻辑也就能更好地把握程序出现的瓶颈点&#xff0c;从而能够实现更有针对性的优化。此外还能帮助开发者识别看似等价的SQL其…

【计算机组成原理】计算机组成原理(三)

计算机组成原理&#xff08;三) 奇偶校验码&#xff1a; 校验原理&#xff1a; 2个比特位可以映射出4种合法的情况 2的2次方 3个比特位可以映射出8种不同的情况&#xff0c;其中4种为合法情况&#xff0c;另外4种为非法情况 上图的每个编码都是一个码字 在同一组码字内&am…

【DES详解】(一)处理input block(64 bits)

一、DES 加密算法总览 0-1、初识置换 IP&#xff08;Initial Permutation&#xff09; 输入&#xff1a;明文&#xff08;64 bits&#xff09; 过程&#xff1a;初识置换 输出&#xff1a;处理后的明文permuted input&#xff08;64 bits&#xff09; 首先&#xff0c;对需要解…

手写一个IO泄露监测框架

作者&#xff1a;长安皈故里 大家好&#xff0c;最近由于项目原因&#xff0c;对IO资源泄漏的监测进行了一番调研深入了解&#xff0c;发现IO泄漏监测框架实现成本比较低&#xff0c;效果很显著&#xff1b;同时由于IO监测涉及到反射&#xff0c;还了解到了通过一种巧妙的方式实…

AEC-Q认证介绍及所有最新工程文件下载

AEC-Q认证介绍及所有最新文件&#xff08;英文版&#xff09;下载 注意&#xff1a; 更多交流及资料请加V&#xff1a;john-130 AEC-Q认证介绍 1&#xff0c;AEC-Q认证总体情况介绍 &#xff08;​1&#xff09;AEC&#xff08;Automotive Electronics Council&#xff09;…