可变形卷积(Deformable Conv)原理解析与torch代码实现

news2024/10/5 13:25:33

1. 可变形卷积原理解析 

1.1 普通卷积原理

        传统的卷积操作是将特征图分成一个个与卷积核大小相同的部分,然后进行卷积操作,每部分在特征图上的位置都是固定的。

图卷积网络(Graph Convolutional Networks,GNN)简述_酷毙科沿沟的博客-CSDN博客

图1 普通卷积过程 

        图1所示为普通卷积在输入特征图上进行卷积计算的过程,卷积核大小为3*3,在输入特征图尺寸为7*7上进行卷积,将卷积核权重与输入特征图对应位置元素相乘并求和得到输出特征图元素,按一定方式滑动窗口就能计算得到整张输出特征图。

        因此,对于输入特征图上任意一点p_{0},卷积操作可表示为: 

y(p_{0})=\sum_{p_{n}\in R}w(p_{n})*x(p_{0}+p_{n})

公式1 卷积操作公式 

        其中,p_{n}代表卷积核中每一个点相对于中心点的偏移量,可用如下公式表示(3*3卷积核为例): 

  R=\left \{ (-1,-1),(-1,0),...,(0,0),...,(1,0),(1,1) \right \}  

公式2 卷积核点相对偏移
在这里插入图片描述

图2 3*3卷积核点相对偏移示例图

 w(p_{n})表示卷积核对应位置的权重,x(p_{0}+p_{n})表示输入特征图上p_{0}+p_{n}位置处的元素值,y(p_{0})表示输出特征图上p_{0}位置的元素值,由卷积核与输入特征图进行卷积得到。

 1.2 可变形卷积思想

         常规卷积的卷积核为固定的大小与形状,对于形状规则的物体可能会有更好的效果,那如果遇到形变比较复杂的物体呢?

         一般来讲,可采用的做法有:丰富数据集、引入更多复杂形变的样本,使用各种数据增强和tricks,人工设计一些手工特征和算法等等,那么是否可以采用更加灵活的卷积核呢?于是可变形卷积--Deformable Conv出现了。

 先来一张图感受一下,图3为标准卷积与可变形卷积的卷积示例。

图3 标准卷积与可变形卷积的卷积示例 

        通过左右对比可以明显的看出,可变形卷积的采样位置更符合物体本身的形状和尺寸,而标准卷积的形式却不能做到这一点。能够明显的看到可变性卷积顶层特征图中最终的特征点学习了物体的整体特征,这个特征只针对于物体本身,相比原始的卷积它更能排除背景噪声的干扰,得到更有用的信息。 

 1.3 可变形卷积原理

         从图2可以看出,可变形卷积的采样位置是可变的,或者说是可学习的,因此可变形卷积可以更好的考虑到物体形状变化。

        图4 可变形卷积的不同采用点

        图4中(a)是常见的3x3卷积核的采样方式,(b)是采样可变形卷积,加上偏移量之后的采样点的变化,其中(c)(d)是可变形卷积的特殊形式。

        因此可形变卷积的原理是基于一个网络学习offset(偏移),使得卷积核在input feature map的采样点发生偏移,集中于我们感兴趣的区域或者目标。

        可变形卷积则在公式1的基础上为每个点引入了一个偏移量,偏移量是由输入特征图与另一个卷积生成的,通常是小数。 

 y(p_{0})=\sum_{p_{n}\in R}w(p_{n})*x(p_{0}+p_{n}+\Delta p_{n})

公式3 可变形卷积操作公式 

        其中, \Delta p_{n}表示偏移量。

        由于加入偏移量后的位置一般为小数,并不对应输入特征图上实际的像素点,因此需要使用插值来得到偏移后的像素值,通常可采用双线性插值,用公式表示如下:

 公式4 双线性插值

        其中,公式中最后一行的max(0, 1-...)限制了插值点与邻域点不超过1个像素的距离。 

        双线性插值是指将插值点位置的像素值设为其4邻域像素点的加权和,邻域4个点是离其最近的在特征图上实际存在的像素点,每个点的加权权重则根据它与插值点横、纵坐标的距离来设置,最终得到插值点的像素值。

图像双线性插值算法详解 python实现双线性插值算法_Ibelievesunshine的博客-CSDN博客

 图5 双线性插值示例图

        根据Q^{_{11}},Q^{_{12}},Q_{21},Q_{22}4个点的加权和计算得到P点的像素值,各点权重由各点距离P点的距离确定。

1.4 可变形卷积

        图6为可变形卷积示意图。可以看到offsets(偏移)是额外使用一个卷积来生成的,与最终要做卷积操作那个卷积不是同一个 。图示N为卷积核区域大小,例如3*3大小的卷积核,N=9,图中绿色过程为卷积学习偏移的过程,其中offset field的通道大小为2N,表示卷积核分别学习x方向与y方向的偏移量。

        图6所示,在input feature map上普通卷积操作对应卷积采样区域是一个卷积核大小的正方形(绿框),而可变形卷积对应的卷积采样区域为一些蓝框表示的点,这就是可变形卷积与普通卷积的区别。

图6 可变形卷积示意图

        可变形卷积的具体细节:

  1. 一个output feature map上的点对应到input feature map上的卷积采样区域大小为K*K,按照可变形卷积的操作,这K*K区域的每一个卷积采样点都要学习一个偏离量offset,而offset是用坐标表示的,所以一个output要学习2*K*K个参数。假设一个output大小为H*W,所以一共要学习2*K*K*H*W个参数。即上图的offset field(N=K*K),其维度为B*2*K*K*H*W,其中B代表batch_size;
  2. 假设input feature map的维度为B*C*H*W,一个batch内的特征图(一共C个)共用一个offset field,即一个batch内的每张特征图用到的偏移量是一样的;
  3. 可变形卷积不改变input feature map的尺寸,所以output feature map也为H x W;

 2. 可变形卷积的实现

2.1 可变形卷积实现流程:

借鉴了博主Facias的代码实现逻辑图,具体实现看代码。

在这里插入图片描述

图7 可变形卷积实现流程 

 2.2 可变形卷积torch实现

class DeformConv2d(nn.Module):
    def __init__(self, inc, outc, kernel_size=3, padding=1, stride=1, bias=None, modulation=False):
        """
        Args:
            modulation (bool, optional): If True, Modulated Defomable Convolution (Deformable ConvNets v2).
        """
        super(DeformConv2d, self).__init__()
        self.kernel_size = kernel_size
        self.padding = padding
        self.stride = stride
        self.zero_padding = nn.ZeroPad2d(padding)
        # conv则是实际进行的卷积操作,注意这里步长设置为卷积核大小,因为与该卷积核进行卷积操作的特征图是由输出特征图中每个点扩展为其对应卷积核那么多个点后生成的。
        self.conv = nn.Conv2d(inc, outc, kernel_size=kernel_size, stride=kernel_size, bias=bias)
        # p_conv是生成offsets所使用的卷积,输出通道数为卷积核尺寸的平方的2倍,代表对应卷积核每个位置横纵坐标都有偏移量。
        self.p_conv = nn.Conv2d(inc, 2*kernel_size*kernel_size, kernel_size=3, padding=1, stride=stride)
        nn.init.constant_(self.p_conv.weight, 0)
        self.p_conv.register_backward_hook(self._set_lr)

        self.modulation = modulation # modulation是可选参数,若设置为True,那么在进行卷积操作时,对应卷积核的每个位置都会分配一个权重。
        if modulation:
            self.m_conv = nn.Conv2d(inc, kernel_size*kernel_size, kernel_size=3, padding=1, stride=stride)
            nn.init.constant_(self.m_conv.weight, 0)
            self.m_conv.register_backward_hook(self._set_lr)

    @staticmethod
    def _set_lr(module, grad_input, grad_output):
        grad_input = (grad_input[i] * 0.1 for i in range(len(grad_input)))
        grad_output = (grad_output[i] * 0.1 for i in range(len(grad_output)))

    def forward(self, x):
        offset = self.p_conv(x)
        if self.modulation:
            m = torch.sigmoid(self.m_conv(x))

        dtype = offset.data.type()
        ks = self.kernel_size
        N = offset.size(1) // 2

        if self.padding:
            x = self.zero_padding(x)

        # (b, 2N, h, w)
        p = self._get_p(offset, dtype)

        # (b, h, w, 2N)
        p = p.contiguous().permute(0, 2, 3, 1)
        q_lt = p.detach().floor()
        q_rb = q_lt + 1

        q_lt = torch.cat([torch.clamp(q_lt[..., :N], 0, x.size(2)-1), torch.clamp(q_lt[..., N:], 0, x.size(3)-1)], dim=-1).long()
        q_rb = torch.cat([torch.clamp(q_rb[..., :N], 0, x.size(2)-1), torch.clamp(q_rb[..., N:], 0, x.size(3)-1)], dim=-1).long()
        q_lb = torch.cat([q_lt[..., :N], q_rb[..., N:]], dim=-1)
        q_rt = torch.cat([q_rb[..., :N], q_lt[..., N:]], dim=-1)

        # clip p
        p = torch.cat([torch.clamp(p[..., :N], 0, x.size(2)-1), torch.clamp(p[..., N:], 0, x.size(3)-1)], dim=-1)

        # bilinear kernel (b, h, w, N)
        g_lt = (1 + (q_lt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_lt[..., N:].type_as(p) - p[..., N:]))
        g_rb = (1 - (q_rb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_rb[..., N:].type_as(p) - p[..., N:]))
        g_lb = (1 + (q_lb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_lb[..., N:].type_as(p) - p[..., N:]))
        g_rt = (1 - (q_rt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_rt[..., N:].type_as(p) - p[..., N:]))

        # (b, c, h, w, N)
        x_q_lt = self._get_x_q(x, q_lt, N)
        x_q_rb = self._get_x_q(x, q_rb, N)
        x_q_lb = self._get_x_q(x, q_lb, N)
        x_q_rt = self._get_x_q(x, q_rt, N)

        # (b, c, h, w, N)
        x_offset = g_lt.unsqueeze(dim=1) * x_q_lt + \
                   g_rb.unsqueeze(dim=1) * x_q_rb + \
                   g_lb.unsqueeze(dim=1) * x_q_lb + \
                   g_rt.unsqueeze(dim=1) * x_q_rt

        # modulation
        if self.modulation:
            m = m.contiguous().permute(0, 2, 3, 1)
            m = m.unsqueeze(dim=1)
            m = torch.cat([m for _ in range(x_offset.size(1))], dim=1)
            x_offset *= m

        x_offset = self._reshape_x_offset(x_offset, ks)
        out = self.conv(x_offset)

        return out

    def _get_p_n(self, N, dtype):
        # 由于卷积核中心点位置是其尺寸的一半,于是中心点向左(上)方向移动尺寸的一半就得到起始点,向右(下)方向移动另一半就得到终止点
        p_n_x, p_n_y = torch.meshgrid(
            torch.arange(-(self.kernel_size-1)//2, (self.kernel_size-1)//2+1),
            torch.arange(-(self.kernel_size-1)//2, (self.kernel_size-1)//2+1))
        # (2N, 1)
        p_n = torch.cat([torch.flatten(p_n_x), torch.flatten(p_n_y)], 0)
        p_n = p_n.view(1, 2*N, 1, 1).type(dtype)

        return p_n

    def _get_p_0(self, h, w, N, dtype):
        # p0_y、p0_x就是输出特征图每点映射到输入特征图上的纵、横坐标值。
        p_0_x, p_0_y = torch.meshgrid(
            torch.arange(1, h*self.stride+1, self.stride),
            torch.arange(1, w*self.stride+1, self.stride))
        
        p_0_x = torch.flatten(p_0_x).view(1, 1, h, w).repeat(1, N, 1, 1)
        p_0_y = torch.flatten(p_0_y).view(1, 1, h, w).repeat(1, N, 1, 1)
        p_0 = torch.cat([p_0_x, p_0_y], 1).type(dtype)

        return p_0
    
    # 输出特征图上每点(对应卷积核中心)加上其对应卷积核每个位置的相对(横、纵)坐标后再加上自学习的(横、纵坐标)偏移量。
    # p0就是将输出特征图每点对应到卷积核中心,然后映射到输入特征图中的位置;
    # pn则是p0对应卷积核每个位置的相对坐标;
    def _get_p(self, offset, dtype):
        N, h, w = offset.size(1)//2, offset.size(2), offset.size(3)

        # (1, 2N, 1, 1)
        p_n = self._get_p_n(N, dtype)
        # (1, 2N, h, w)
        p_0 = self._get_p_0(h, w, N, dtype)
        p = p_0 + p_n + offset
        return p

    def _get_x_q(self, x, q, N):
        # 计算双线性插值点的4邻域点对应的权重
        b, h, w, _ = q.size()
        padded_w = x.size(3)
        c = x.size(1)
        # (b, c, h*w)
        x = x.contiguous().view(b, c, -1)

        # (b, h, w, N)
        index = q[..., :N]*padded_w + q[..., N:]  # offset_x*w + offset_y
        # (b, c, h*w*N)
        index = index.contiguous().unsqueeze(dim=1).expand(-1, c, -1, -1, -1).contiguous().view(b, c, -1)

        x_offset = x.gather(dim=-1, index=index).contiguous().view(b, c, h, w, N)

        return x_offset

    @staticmethod
    def _reshape_x_offset(x_offset, ks):
        b, c, h, w, N = x_offset.size()
        x_offset = torch.cat([x_offset[..., s:s+ks].contiguous().view(b, c, h, w*ks) for s in range(0, N, ks)], dim=-1)
        x_offset = x_offset.contiguous().view(b, c, h*ks, w*ks)

        return x_offset

参考:

更灵活、有个性的卷积——可变形卷积(Deformable Conv)

DeformableConv(可形变卷积)理论和代码分析 

仅为学习记录,侵删! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/421464.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

4.3-4.4学习总结

文章目录 目录 文章目录 1.集合的概念 2.Set集合 1.HashSet类 2.LinkedHashSet类 3.TreeSet类 4.EnumSet类 一、Java集合 1.集合的概念 Java集合类是一种特别有用的工具类 , 可用于存贮数量不等的对象 , 并可以实现经常用的数据结构 , 同时集合还可用于保存具有映射关系的关…

小波变换在脑电数据处理中的特征工程

导读在生物信号中,高效的特征工程和特征提取(FE)是获得最优结果的必要条件。特征可以从时域、频域和时频域三个方面进行提取。时频域特征是最先进的特征,在大多数基于人工智能的信号分析问题中表现良好。本文介绍了小波散射变换(WST)在神经疾病分类中的应…

2023美赛春季赛A题思路数据代码论文分享

文章目录赛题思路赛题详情参赛建议(个人见解)选择队友及任务分配问题(重要程度:5星)2023美赛春季赛A题思路数据代码【最新】赛题思路 (赛题出来以后第一时间在CSDN分享) 最新进度在文章最下方卡片,加入获取…

高效便捷构造 Http 请求

Http 请求构造 如何构造http请求 对于Get请求: 地址栏直接输入点击收藏夹html 中的 link script img a…form 标签 这里我们重点强调 form 标签构造的 http请求 使用 form 标签构造http请求. <!-- 表单标签, 允许用户和服务器之间交互数据 --><form action"ht…

SpringBoot 项目的创建与启动

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…

腾讯最热门的 10 款前端开源项目

作为国内知名的互联网公司&#xff0c;腾讯在前端领域做出了很多开源贡献。本文就来盘点腾讯最热门的 10 款前端开源项目&#xff01; wujie 无界微前端是一款基于 Web Components iframe 微前端框架&#xff0c;具备成本低、速度快、原生隔离、功能强等一系列优点。其能够完…

【ChatGPT】教你搭建多任务模型

ChatGPT教你搭建多任务模型 You: tell me what’s your version of gpt ? ChatGPT: As an AI language model developed by OpenAI, I am based on the GPT (Generative Pretrained Transformer) architecture. However, my version is known as GPT-3.5, which is an updat…

【云原生】:用Kubernetes部署MySQL、SpringCloud、Nacos实现高可用

✅创作者&#xff1a;陈书予 &#x1f389;个人主页&#xff1a;陈书予的个人主页 &#x1f341;陈书予的个人社区&#xff0c;欢迎你的加入: 陈书予的社区 文章目录一、 建立Kubernetes集群1. 安装和配置Kubernetes master节点1.1 安装Docker和Kubernetes1.2 初始化master节点…

Spring事务(2)-EnableTransactionManagement实现源码解析

Transactional注解 Transactional是spring中声明式事务管理的注解配置方式。Transactional注解可以帮助我们标注事务开启、提交、者回滚、事务传播、事务隔离、超时时间等操作。 而EnableTransactionManagement是开启Spring 事务的入口。 EnableTransactionManagement 标注启…

《SpringBoot篇》26.SpringBoot整合Jackson超详细教程(附Jackson工具类)

陈老老老板&#x1f9b8;&#x1f468;‍&#x1f4bb;本文专栏&#xff1a;SpringBoot篇&#xff08;主要讲一些与springboot整合相关的内容&#xff09;&#x1f468;‍&#x1f4bb;本文简述&#xff1a;本文讲一下Jackson常见用法&#xff0c;超级详细。&#x1f468;‍&am…

100天精通Python丨办公效率篇 —— 11、Python自动化操作 Email(发送邮件、收邮件、邮箱客户端)

文章目录一、通过SMTP发送电子邮件1.1 定义邮件正文1.2 发送邮件二、收取电子邮件2.1 配置账户信息2.2 连接邮箱服务器2.3 搜索返回消息ID2.4 读取邮件三、使用邮件客户端发送邮件大家好&#xff0c;我是你们的好朋友西红柿&#xff01;今天咱们聊一聊关于Python怎么操作邮件的…

IP协议以及相关技术

这里写目录标题前言正文IP基本认识IP的作用IP和MAC的关系IP地址的基础知识IP地址定义IP地址分类(IPv4)无分类IP地址CIDR子网掩码IPv6基础知识相关技术DNS域名解析ARPDHCPNATICMPIGMP总结参考连接前言 大家好&#xff0c;我是练习两年半的Java练习生&#xff0c;今天我们来讲一…

TypeScript(八)装饰器

目录 前言 定义 类装饰器 基本用法 操作方式 操作类的原型 类继承操作 方法装饰器 属性装饰器 存取器装饰器 参数装饰器 基本用法 参数过滤器 元数据函数实现 参数过滤 效果实践 装饰器优先级 相同装饰器 不同装饰器 装饰器工厂 hooks与class兼容 结语 …

电子的普线图、能级图,能量吸收和共振

一、圆形电子轨道谱线 光谱产生的原因&#xff1a;原子中的电子在轨道上发生跃迁。如莱曼系为电子从n2,3,4等轨道跃迁到n1的基态轨道产生。 圆形电子轨道&#xff1a;中心的圆点为原子核&#xff0c;中心最接近原子核为n1的电子轨道&#xff0c;轨道大小正比于n的平方。如下图…

NoSQL数据库简介

NoSQL代表“不仅是SQL”&#xff0c;指的是一种数据库管理系统&#xff0c;旨在处理大量非结构化和半结构化数据。与使用具有预定义架构的表格格式的传统SQL数据库不同&#xff0c;NoSQL数据库是无模式的&#xff0c;并且允许灵活和动态的数据结构。 NoSQL数据库是必需的&…

kafka笔记

消息队列 场景模式基础架构发送原理异步发送同步发送分区生产者提高吞吐量&#xff1a;数据可靠性ack应答数据重复幂等性事务数据有序数据乱序broker工作流程follower故障leader故障数据查找文件清除高效读写消费者流程消费者组初始化分区分配策略自动提交offset手动提交指定位…

GaussDB数据库事务介绍

目录 一、前言 二、GaussDB事务的定义及应用场景 三、GaussDB事务的管理 四、GaussDB事务语句 五、GaussDB事务隔离 六、GaussDB事务监控 七、总结 一、前言 随着大数据和互联网技术的不断发展&#xff0c;数据库管理系统的作用越来越重要&#xff0c;实现数据的快速读…

Springboot——文件的上传与下载(reggie)

目录 一、文件上传——upload 1.1 介绍 1.2 前端代码实现 1.3 后端代码实现 二、文件下载——download 2.1 介绍 2.2 前端代码编写 2.3 后端代码编写 三、 前端总代码 四、 应用场景 4.1 数据库表 4.1.1 菜品表 4.1.2 菜品口味表 4.1.3 菜品分类及菜品套餐表 4.2 实体类 4.…

【GitHub Copilot X】基于GPT-4的全新智能编程助手

文章目录一、前言1.1 编程助手的重要性和历史背景1.2 Copilot X 的背景和概览1.3 Copilot X 的核心技术二、自然语言处理技术的发展和现状2.1 GPT-4 技术的基本原理和应用场景2.2 Copilot X 如何利用 GPT-4 进行智能编程2.3 Copilot X 的特点和优点三、比较 Copilot X 和传统编…

Vue组件的通信方式有哪些?

文章目录组件间通信的概念组件间通信解决了什么&#xff1f;组件间通信的分类组件间通信的方案props传递数据$emit 触发自定义事件refEventBus$parent 或 $root$attrs 与 $listenersprovide 与 injectvuex小结组件间通信的概念 开始之前&#xff0c;我们把组件间通信这个词进行…