AVL树
- AVL树的概念
- AVL树结点的定义
- AVL树的插入
- AVL树的旋转
- (1)左单旋
- (2)右单旋
- (3)左右双旋
- (4)右左双旋
- AVL树的验证
- AVL树的性能
AVL树的概念
二叉搜索树虽然可以提高我们查找数据的效率,但如果插入二叉搜索树的数据是有序或接近有序的,此时二叉搜索树会退化为单支树,在单支树当中查找数据相当于在单链表当中查找数据,效率是很低下的。
因此,两位俄罗斯的数学家G.M.A delson-Velskii和E.M.Landis在1962年发明了解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
AVL树可以是一棵空树,也可以是具有以下性质的一棵二叉搜索树:
- 树的左右子树都是AVL树。
- 树的左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/01)。
如果一棵二叉搜索树的高度是平衡的,它就是AVL树。如果它有n个结点,其高度可保持在O(log2 N),搜索时间复杂度也是O(log2 N)。
只有满二叉树才能做到每个结点左右子树高度之差均为0。
ps:AVL树不一定需要平衡因子,平衡因子只是一种控制实现方式。
AVL树结点的定义
我们这里直接实现K V
模型的AVL树,为了方便后续的操作,这里将AVL树中的结点定义为三叉链结构,并在每个结点当中引入平衡因子(右子树高度-左子树高度)。除此之外,还需编写一个构造新结点的构造函数,由于新构造结点的左右子树均为空树,于是将新构造结点的平衡因子初始设置为0即可。
template<class K, class V>
struct AVLTreeNode
{
//三叉链
AVLTreeNode<K, V>* _left;
AVLTreeNode<K, V>* _right;
AVLTreeNode<K, V>* _parent;
//存储的键值对
pair<K, V> _kv;
//平衡因子(balance factor)
int _bf; //右子树高度-左子树高度
//构造函数
AVLTreeNode(const pair<K, V>& kv)
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _kv(kv)
, _bf(0)
{}
};
AVL树的插入
AVL树插入结点时有以下三个步骤:
- 按照二叉搜索树的插入方法,找到待插入位置。
- 找到待插入位置后,将待插入结点插入到树中。
- 更新平衡因子,如果出现不平衡,则需要进行旋转。
因为AVL树本身就是一棵二叉搜索树,因此寻找结点的插入位置是非常简单的,按照二叉搜索树的插入规则:
- 待插入结点的key值比当前结点小就插入到该结点的左子树。
- 待插入结点的key值比当前结点大就插入到该结点的右子树。
- 待插入结点的key值与当前结点的key值相等就插入失败。
如此进行下去,直到找到与待插入结点的key值相同的结点判定为插入失败,或者最终走到空树位置进行结点插入。
AVL树插入结点后需要更新树中结点的平衡因子,由于一个结点的平衡因子是否需要更新,是取决于该结点的左右子树的高度是否发生了变化,因此插入一个结点后,该结点的祖先结点的平衡因子可能需要更新。
所以我们插入结点后需要倒着往上更新平衡因子,更新规则如下:
- 新增结点在parent的右边,parent的平衡因子+ + 。
- 新增结点在parent的左边,parent的平衡因子− −。
每更新完一个结点的平衡因子后,都需要进行以下判断:
- 如果parent的平衡因子等于-1或者1,表明还需要继续往上更新平衡因子。
- 如果parent的平衡因子等于0,表明无需继续往上更新平衡因子了。
- 如果parent的平衡因子等于-2或者2,表明此时以parent结点为根结点的子树已经不平衡了,需要进行旋转处理。
注意:
- parent的平衡因子在更新前只可能是-1/0/1(AVL树中每个结点的左右子树高度之差的绝对值不超过1)。
- 在最坏情况下,我们更新平衡因子时会一路更新到根结点。
若是在更新平衡因子的过程当中,出现了平衡因子为-2/2的结点,这时我们需要对以该结点为根结点的树进行旋转处理,而旋转处理分为四种,在进行分类之前我们首先需要进行以下分析:
当parent的平衡因子为-2/2时,cur的平衡因子必定是-1/1而不会是0。
理由如下:
若cur的平衡因子是0,那么cur一定是新增结点,而不是上一次更新平衡因子时的parent,否则在上一次更新平衡因子时,会因为parent的平衡因子为0而停止继续往上更新。
而cur是新增结点的话,其父结点的平衡因子更新后一定是-1/0/1,而不可能是-2/2,因为新增结点最终会插入到一个空树当中,在新增结点插入前,其父结点的状态有以下两种可能:
- 其父结点是一个左右子树均为空的叶子结点,其平衡因子是0,新增结点插入后其平衡因子更新为-1/1。
- 其父结点是一个左子树或右子树为空的结点,其平衡因子是-1/1,新增结点插入到其父结点的空子树当中,使得其父结点左右子树当中较矮的一棵子树增高了,新增结点后其平衡因子更新为0。
综上所述,当parent的平衡因子为-2/2时,cur的平衡因子必定是-1/1而不会是0。
根据此结论,我们可以将旋转处理分为以下四类:
- 当parent的平衡因子为-2,cur的平衡因子为-1时,进行右单旋。
- 当parent的平衡因子为-2,cur的平衡因子为1时,进行左右双旋。
- 当parent的平衡因子为2,cur的平衡因子为-1时,进行右左双旋。
- 当parent的平衡因子为2,cur的平衡因子为1时,进行左单旋。
并且,在进行旋转处理后就无需继续往上更新平衡因子了,因为旋转后树的高度变为插入之前了,即树的高度没有发生变化,也就不会影响其父结点的平衡因子了。
插入代码如下:
//插入
bool Insert(const pair<K, V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
return true;
}
//按照二叉搜索树的插入方法,找到待插入位置
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else//待插入结点的key值等于当前结点的key值
{
return false;//插入失败(不允许key值冗余)
}
}
//找到插入位置
cur = new Node(kv);
if (parent->_kv.first < cur->_kv.first)
{
parent->_right = cur;
cur->_parent = parent;//三叉链结构,保证可以双向找到
}
else
{
parent->_left = cur;
cur->_parent = parent;
}
// 控制树的平衡
//1.更新平衡因子--》新增节点到根节点的祖先路径
//2.出现异常平衡因子,则需要旋转平衡处理。
while (parent)
{
// 0、更新平衡因子
if (cur == parent->_left)//插入位置是parent左边
parent->_bf--;
else
parent->_bf++;
// 检查父亲的平衡因子
// 1、父亲所在子树的高度不变,不影响祖先,更新结束
if (parent->_bf == 0)
{
break;
} // 2、父亲所在子树的高度变了,继续往上更新
else if (parent->_bf == 1 || parent->_bf == -1)
{
cur = parent;
parent = parent->_parent;
} // 3、父亲所在子树的出现了不平衡,需要旋转处理
else if (parent->_bf == 2 || parent->_bf == -2)
{
if (parent->_bf == -2 && cur->_bf == -1)
{
// 右单旋
RotateR(parent);
}
else if (parent->_bf == 2 && cur->_bf == 1)
{
// 左单旋
RotateL(parent);
}
//双旋:呈折线
else if (parent->_bf == -2 && cur->_bf == 1)
{
RotateLR(parent);//先左单旋,再右单旋
}
else if (parent->_bf == 2 && cur->_bf == -1)
{
RotateRL(parent);//先右单旋,再左单旋
}
else
{
//说明插入更新平衡因子之前,树中平衡因子就有问题了、
assert(false);
}
break;//旋转后就一定平衡了,无需继续往上更新平衡因子(旋转后树高度变为插入之前了)
}
else
{
assert(false);//说明在插入时这棵树就已经出问题了
}
}
return true;
}
AVL树的旋转
(1)左单旋
左单旋的步骤如下:
- 让subR的左子树作为parent的右子树。
- 让parent作为subR的左子树。
- 让subR作为整个子树的根。
- 更新平衡因子。
举例:
当在子树c上插入一个新节点.此时子树c的高度变化为h+1,子树b的高度为h.结点5的平衡因子变为1,结点3的平衡因子变为2.此树不再平衡
左单旋:整体向左方向旋转。
- 结点5的左子树b变为结点3的右子树
- 结点3以及其子树变为结点5的左子树
左单旋后满足二叉搜索树的性质:
- subR的左子树当中结点的值本身就比parent的值大,因此可以作为parent的右子树。
- parent及其左子树当中结点的值本身就比subR的值小,因此可以作为subR的左子树。
可以看到,经过左单旋后,树的高度变为插入之前了,即树的高度没有发生变化,所以左单旋后无需继续往上更新平衡因子。
注意: 结点是三叉链结构,改变结点关系时需要跟着改变父指针的指向。
代码如下:
//左单旋
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
subRL->_parent = parent;
Node* ppNode = parent->_parent;
subR->_left = parent;
parent->_parent = subR;
if (parent == _root)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if (ppNode->_left == parent)
{
ppNode->_left = subR;
}
else
{
ppNode->_right = subR;
}
subR->_parent = ppNode;
}
subR->_bf = parent->_bf = 0; //更新平衡因子
}
(2)右单旋
右单旋的步骤如下:
- 让subL的右子树作为parent的左子树。
- 让parent作为subL的右子树。
- 让subL作为整个子树的根。
- 更新平衡因子。
举例:
当在子树a的下面插入一个结点时,结点3的左子树高度变为h+1,右子树高度为h,平衡因子变为-1.结点5的左子树高度变为h+2,右子树高度变为h,平衡因子变为-2.此时不再平衡。
右单旋:整体向右方向旋转。
- 结点5变为结点3的右子树
- 结点3右子树以及其子树变为结点5的左子树
- parent指向结点3
右单旋后满足二叉搜索树的性质:
- subL的右子树当中结点的值本身就比parent的值小,因此可以作为parent的左子树。
- parent及其右子树当中结点的值本身就比subL的值大,因此可以作为subL的右子树。
代码如下:
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)//当子树高度为0,subLR为空
subLR->_parent = parent;
Node* ppNode = parent->_parent;//防止parent也是一棵树的子树,parent也有自己的parent,用ppNode记录parent的parent
subL->_right = parent;
parent->_parent = subL;
if (parent == _root)
{
_root = subL;
subL->_parent = nullptr;
}
else//说明parent也是一棵树的子树,parent也有自己的parent
{
//此时将subL作为当前子树的根,将原先parent的parent指向当前的subL
if (ppNode->_left == parent)
ppNode->_left = subL;
else
ppNode->_right = subL;
subL->_parent = ppNode;
}
parent->_bf = subL->_bf = 0;
}
(3)左右双旋
新结点插入到子树b和c会有不同的情况,首先以在子树b下插入一个结点为例,此时结点4的平衡因子变为-1,结点3的平衡因子变为1,结点5的平衡因子变为-2. AVL树不再平衡。
左右双旋:先左单旋,再右单旋。不过两次的对象不同。先对结点3和结点4进行左单旋,然后进行右单旋。
以上图为例,左右双旋的步骤如下:
- 以subL为旋转点进行左单旋。
- 以parent为旋转点进行右单旋。
- 更新平衡因子。
左右双旋后,平衡因子的更新随着subLR原始平衡因子的不同分为以下三种情况:
1、当subLR原始平衡因子是-1时,左右双旋后parent、subL、subLR的平衡因子分别更新为1、0、0。
2、当subLR原始平衡因子是1时,左右双旋后parent、subL、subLR的平衡因子分别更新为0、-1、0。
3、当subLR原始平衡因子是0时,左右双旋后parent、subL、subLR的平衡因子分别更新为0、0、0。
可以看到,经过左右双旋后,树的高度变为插入之前了,即树的高度没有发生变化,所以左右双旋后无需继续往上更新平衡因子。
代码如下:
//左右双旋
void RotateLR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf; //subLR不可能为nullptr,因为subL的平衡因子是1
//1、以subL为旋转点进行左单旋
RotateL(subL);
//2、以parent为旋转点进行右单旋
RotateR(parent);
//3、更新平衡因子
if (bf == 1)
{
subLR->_bf = 0;
subL->_bf = -1;
parent->_bf = 0;
}
else if (bf == -1)
{
subLR->_bf = 0;
subL->_bf = 0;
parent->_bf = 1;
}
else if (bf == 0)
{
subLR->_bf = 0;
subL->_bf = 0;
parent->_bf = 0;
}
else
{
assert(false); //在旋转前树的平衡因子就有问题
}
}
(4)右左双旋
同样也是有三种情况,这里我以新节点插入到c子树为例分析:
调整过程:
以上图为例,右左双旋的步骤如下:
- 以subR为旋转点进行右单旋。
- 以parent为旋转点进行左单旋。
- 更新平衡因子。
右左双旋后,平衡因子的更新随着subLR原始平衡因子的不同分为以下三种情况:
1、当subRL原始平衡因子是1时,左右双旋后parent、subR、subRL的平衡因子分别更新为-1、0、0。
2、当subRL原始平衡因子是-1时,左右双旋后parent、subR、subRL的平衡因子分别更新为0、1、0。
3、当subRL原始平衡因子是0时,左右双旋后parent、subR、subRL的平衡因子分别更新为0、0、0。
代码如下:
//右左双旋
void RotateRL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
//1、以subR为轴进行右单旋
RotateR(subR);
//2、以parent为轴进行左单旋
RotateL(parent);
//3、更新平衡因子
if (bf == 1)
{
subRL->_bf = 0;
parent->_bf = -1;
subR->_bf = 0;
}
else if (bf == -1)
{
subRL->_bf = 0;
parent->_bf = 0;
subR->_bf = 1;
}
else if (bf == 0)
{
subRL->_bf = 0;
parent->_bf = 0;
subR->_bf = 0;
}
else
{
assert(false); //在旋转前树的平衡因子就有问题
}
}
AVL树的验证
AVL树是在二叉搜索树的基础上加入了平衡性的限制,也就是说AVL树也是二叉搜索树,因此我们可以先获取二叉树的中序遍历序列,来判断二叉树是否为二叉搜索树。
//中序遍历
void Inorder()
{
_Inorder(_root);
}
//中序遍历子函数
void _Inorder(Node* root)
{
if (root == nullptr)
return;
_Inorder(root->_left);
cout << root->_kv.first << " ";
_Inorder(root->_right);
}
但中序有序只能证明是二叉搜索树,要证明二叉树是AVL树还需验证二叉树的平衡性,在该过程中我们可以顺便检查每个结点当中平衡因子是否正确。
采用后序遍历,变量步骤如下:
- 从叶子结点处开始计算每课子树的高度。(每棵子树的高度 = 左右子树中高度的较大值 + 1)
- 先判断左子树是否是平衡二叉树。
- 再判断右子树是否是平衡二叉树。
- 若左右子树均为平衡二叉树,则返回当前子树的高度给上一层,继续判断上一层的子树是否是平衡二叉树,直到判断到根为止。(若判断过程中,某一棵子树不是平衡二叉树,则该树也就不是平衡二叉树了)
代码:
//判断是否为AVL树
bool IsAVLTree()
{
int hight = 0; //输出型参数
return _IsBalanced(_root, hight);
}
//检测二叉树是否平衡
bool _IsBalanced(Node* root, int& hight)
{
if (root == nullptr) //空树是平衡二叉树
{
hight = 0; //空树的高度为0
return true;
}
//先判断左子树
int leftHight = 0;
if (_IsBalanced(root->_left, leftHight) == false)
return false;
//再判断右子树
int rightHight = 0;
if (_IsBalanced(root->_right, rightHight) == false)
return false;
//检查该结点的平衡因子
if (rightHight - leftHight != root->_bf)
{
cout << "平衡因子设置异常:" << root->_kv.first << endl;
}
//把左右子树的高度中的较大值+1作为当前树的高度返回给上一层
hight = max(leftHight, rightHight) + 1;
return abs(rightHight - leftHight) < 2; //平衡二叉树的条件
}
AVL树的性能
- AVL树是一棵绝对平衡的二叉搜索树,其要求每个结点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即l o g N 。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。
因此,如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但当一个结构经常需要被修改时,AVL树就不太适合了。