SpringCloud:ElasticSearch之DSL查询文档

news2025/1/12 4:45:00

elasticsearch的查询依然是基于JSON风格的DSL来实现的。

1.1.DSL查询分类

Elasticsearch提供了基于JSONDSL(Domain Specific Language)来定义查询。常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用。例如:match_all

  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:

    • match_query
    • multi_match_query
  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:

    • ids
    • range
    • term
  • 地理(geo)查询:根据经纬度查询。例如:

    • geo_distance
    • geo_bounding_box
  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:

    • bool
    • function_score

查询的语法基本一致:

GET /indexName/_search
{
  "query": {
    "查询类型": {
      "查询条件": "条件值"
    }
  }
}

我们以查询所有为例,其中:

  • 查询类型为match_all
  • 没有查询条件
// 查询所有
GET /indexName/_search
{
  "query": {
    "match_all": {
    }
  }
}

其它查询无非就是查询类型查询条件的变化。

1.2.全文检索查询

1.2.1.使用场景

全文检索查询的基本流程如下:

  • 对用户搜索的内容做分词,得到词条
  • 根据词条去倒排索引库中匹配,得到文档id
  • 根据文档id找到文档,返回给用户

比较常用的场景包括:

  • 商城的输入框搜索
  • 百度输入框搜索

例如京东:

在这里插入图片描述

因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。

1.2.2.基本语法

常见的全文检索查询包括:

  • match查询:单字段查询
  • multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件

match查询语法如下:

GET /indexName/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT"
    }
  }
}

mulit_match语法如下:

GET /indexName/_search
{
  "query": {
    "multi_match": {
      "query": "TEXT",
      "fields": ["FIELD1", "FIELD2"]
    }
  }
}

1.2.3.示例

match查询示例:

在这里插入图片描述

multi_match查询示例:

在这里插入图片描述

可以看到,两种查询结果是一样的,为什么?

因为我们将brandnamebusiness值都利用copy_to复制到了all字段中。因此你根据三个字段搜索,和根据all字段搜索效果当然一样了。

但是,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。

1.2.4.总结

matchmulti_match的区别是什么?

  • match:根据一个字段查询
  • multi_match:根据多个字段查询,参与查询字段越多,查询性能越差

1.3.精准查询

精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:

  • term:根据词条精确值查询
  • range:根据值的范围查询

1.3.1.term查询

因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。

语法说明:

// term查询
GET /indexName/_search
{
  "query": {
    "term": {
      "FIELD": {
        "value": "VALUE"
      }
    }
  }
}

示例:

当我搜索的是精确词条时,能正确查询出结果:

在这里插入图片描述

但是,当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到:

在这里插入图片描述

1.3.2.range查询

范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。

基本语法:

// range查询
GET /indexName/_search
{
  "query": {
    "range": {
      "FIELD": {
        "gte": 10, // 这里的gte代表大于等于,gt则代表大于
        "lte": 20 // lte代表小于等于,lt则代表小于
      }
    }
  }
}

示例:

在这里插入图片描述

1.3.3.总结

精确查询常见的有哪些?

  • term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段
  • range查询:根据数值范围查询,可以是数值、日期的范围

1.4.地理坐标查询

所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-queries.html

常见的使用场景包括:

  • 携程:搜索我附近的酒店
  • 滴滴:搜索我附近的出租车
  • 微信:搜索我附近的人

1.4.1.矩形范围查询

矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档。

查询时,需要指定矩形的左上右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。

语法如下:

// geo_bounding_box查询
GET /indexName/_search
{
  "query": {
    "geo_bounding_box": {
      "FIELD": {
        "top_left": { // 左上点
          "lat": 31.1,
          "lon": 121.5
        },
        "bottom_right": { // 右下点
          "lat": 30.9,
          "lon": 121.7
        }
      }
    }
  }
}

这种并不符合“附近的人”这样的需求,所以我们就不做了。

1.4.2.附近查询

附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。

换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:

在这里插入图片描述

语法说明:

// geo_distance 查询
GET /indexName/_search
{
  "query": {
    "geo_distance": {
      "distance": "15km", // 半径
      "FIELD": "31.21,121.5" // 圆心
    }
  }
}

示例:

我们先搜索陆家嘴附近15km的酒店:

在这里插入图片描述

发现共有47家酒店。

然后把半径缩短到3公里:

在这里插入图片描述

可以发现,搜索到的酒店数量减少到了5家。

1.5.复合查询

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
  • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索

1.5.1.相关性算分

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

例如,我们搜索 “虹桥如家”,结果如下:

[
  {
    "_score" : 17.850193,
    "_source" : {
      "name" : "虹桥如家酒店真不错",
    }
  },
  {
    "_score" : 12.259849,
    "_source" : {
      "name" : "外滩如家酒店真不错",
    }
  },
  {
    "_score" : 11.91091,
    "_source" : {
      "name" : "迪士尼如家酒店真不错",
    }
  }
]

elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:

在这里插入图片描述

在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:

在这里插入图片描述

TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:

在这里插入图片描述

小结:elasticsearch会根据词条和文档的相关度做打分,算法由两种:

  • TF-IDF算法
  • BM25算法,elasticsearch 5.1版本后采用的算法

1.5.2.算分函数查询

根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。

以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。如图:

在这里插入图片描述

要想认为控制相关性算分,就需要利用elasticsearch中的function score查询了。

1)语法说明

在这里插入图片描述

function score查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分query score)
  • 过滤条件filter部分,符合该条件的文档才会重新算分
  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分function score),有四种函数
    • weight:函数结果是常量
    • field_value_factor:以文档中的某个字段值作为函数结果
    • random_score:以随机数作为函数结果
    • script_score:自定义算分函数算法
  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
    • multiply:相乘
    • replace:用function score替换query score
    • 其它,例如:sumavgmaxmin

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分query score
  • 2)根据过滤条件,过滤文档
  • 3)符合过滤条件的文档,基于算分函数运算,得到函数算分function score
  • 4)将原始算分query score)和函数算分function score)基于运算模式做运算,得到最终结果,作为相关性算分。

因此,其中的关键点是:

  • 过滤条件:决定哪些文档的算分被修改
  • 算分函数:决定函数算分的算法
  • 运算模式:决定最终算分结果

2)示例

需求:给“如家”这个品牌的酒店排名靠前一些

翻译一下这个需求,转换为之前说的四个要点:

  • 原始条件:不确定,可以任意变化
  • 过滤条件:brand = “如家”
  • 算分函数:可以简单粗暴,直接给固定的算分结果,weight
  • 运算模式:比如求和

因此最终的DSL语句如下:

GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {  .... }, // 原始查询,可以是任意条件
      "functions": [ // 算分函数
        {
          "filter": { // 满足的条件,品牌必须是如家
            "term": {
              "brand": "如家"
            }
          },
          "weight": 2 // 算分权重为2
        }
      ],
      "boost_mode": "sum" // 加权模式,求和
    }
  }
}

测试,在未添加算分函数时,如家得分如下:

在这里插入图片描述

添加了算分函数后,如家得分就提升了:

在这里插入图片描述

3)小结

function score query定义的三要素是什么?

  • 过滤条件:哪些文档要加分
  • 算分函数:如何计算function score
  • 加权方式:function scorequery score如何运算

1.5.3.布尔查询

布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分

比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤:

在这里插入图片描述

每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。

需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:

  • 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分
  • 其它过滤条件,采用filter查询。不参与算分

1)语法示例:

GET /hotel/_search
{
  "query": {
    "bool": {
      "must": [
        {"term": {"city": "上海" }}
      ],
      "should": [
        {"term": {"brand": "皇冠假日" }},
        {"term": {"brand": "华美达" }}
      ],
      "must_not": [
        { "range": { "price": { "lte": 500 } }}
      ],
      "filter": [
        { "range": {"score": { "gte": 45 } }}
      ]
    }
  }
}

2)示例

需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。

分析:

  • 名称搜索,属于全文检索查询,应该参与算分。放到must
  • 价格不高于400,用range查询,属于过滤条件,不参与算分。放到must_not
  • 周围10km范围内,用geo_distance查询,属于过滤条件,不参与算分。放到filter

在这里插入图片描述

3)小结

bool查询有几种逻辑关系?

  • must:必须匹配的条件,可以理解为“与”
  • should:选择性匹配的条件,可以理解为“或”
  • must_not:必须不匹配的条件,不参与打分
  • filter:必须匹配的条件,不参与打分

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/416360.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

第04章_IDEA的安装与使用(上)

第04章_IDEA的安装与使用(上) 讲师:尚硅谷-宋红康(江湖人称:康师傅) 官网:http://www.atguigu.com 本章专题与脉络 【Why IDEA ?】 【注】JetBrains官方说明: 尽管我们采取了多种…

从二叉树角度看归并排序

归并排序本质上可以看作二叉树的后序遍历 里面用到的核心思想 > 分治 分:二叉树算法思想中的分解问题思想 治:链表中双指针技巧(将两条链表合并成一条有序链表) sort首先将数组分成左半边和右半边 > 然后分别对左右两…

Log库和配置系统结构

Log库: 类关系 首先有3个大类:LogEvent、LogAppender、Logger、LogFormat; 关系如下: Logger:具体log的实现 LogAppender:将Log信息传输到不同的目的地,根据不同的需求派生出不同的类 LogF…

Java 系列 Nacos

Java 系列文章 文章目录Java 系列文章前言一、Nacas 介绍及安装1. 什么是Nacos2. 为什么使用Nacos3. Nacos 下载和安装二、Nacos服务提供者注册1. Nacos代替Eureka2. Nacos服务注册中心3. Nacos Discovery引入1. 创建新项目2. POM3. YML文件4. 启动类5. 业务类6. 测试&#xff…

Git如何推送当前代码到远程仓库

第一种方法 (建立在已经配置好用户变量和ssh基础上) 在本地创建git仓库 git init 绑定远程仓库,origin是给远程仓库起的别名,也可以起其他名字,但是如果用origin,git push时可以不指出名字,如果…

【2023 · CANN训练营第一季】昇腾AI入门课(Pytorch)——第一章学习笔记

第一章 昇腾AI基础知识介绍 第2节 昇腾AI全栈架构 昇腾 AI 全栈可以分成四个大部分: 1.应用使能层面,此层面通常包含用于部署模型的软硬件,例如 API 、 SDK 、部署平台,模型库等等。 2. AI 框架层面,此层…

【C语言】 程序员的自我修养之(程序编译过程)

在ANSI C(标准C)的任何一种实现中,存在两个不同的环境。 第1种是翻译环境,在这个环境中源代码被转换为可执行的机器指令。第2种是执行环境,它用于实际执行代码。 今天我们就讲解他们在这环境过程都做了什么。 文章目录详解编译链接翻译环境编…

【数据库原理 • 七】数据库并发控制

前言 数据库技术是计算机科学技术中发展最快,应用最广的技术之一,它是专门研究如何科学的组织和存储数据,如何高效地获取和处理数据的技术。它已成为各行各业存储数据、管理信息、共享资源和决策支持的最先进,最常用的技术。 当前…

【19】核心易中期刊推荐——人工智能 | 遥感信息处理

🚀🚀🚀NEW!!!核心易中期刊推荐栏目来啦 ~ 📚🍀 核心期刊在国内的应用范围非常广,核心期刊发表论文是国内很多作者晋升的硬性要求,并且在国内属于顶尖论文发表,具有很高的学术价值。在中文核心目录体系中,权威代表有CSSCI、CSCD和北大核心。其中,中文期刊的数…

redis——优化

键值设计bigKey例子批处理单机 pipeline集群服务器持久化慢查询安全内存集群问题集群完整性集群带宽数据倾斜客户端性能命令的集群兼容性lua和事务&#xff1a;集群下不支持键值设计 长度 < 44 节省内存。string的底层数据结构中&#xff0c;编码格式embstr&#xff08;连续…

LeetCode:455. 分发饼干——贪心算法

&#x1f34e;道阻且长&#xff0c;行则将至。&#x1f353; &#x1f33b;算法&#xff0c;不如说它是一种思考方式&#x1f340;算法专栏&#xff1a; &#x1f449;&#x1f3fb;123 贪心算法是在每个阶段选取局部最优解&#xff0c;最终得到全局最优解的一种思想。贪心算法…

操作系统论文导读(四):Minimizing Memory Utilization of Real-Time Task Sets in Single and…

目录 一、论文核心思想&#xff1a; 二、降低RAM的思想 三、基本的相关定义 四、单处理器方面 五、优化单处理器中的堆栈使用 六、多处理器方面 七、基本的相关调度 八、协议特点 Minimizing Memory Utilization of Real-Time Task Sets in Single and Multi-Processor…

算法记录 | Day29 回溯算法

491.递增子序列 思路&#xff1a; 1.确定回溯函数参数&#xff1a;定义全局遍历存放res集合和单个path&#xff0c;还需要 nums数组startindex&#xff08;int&#xff09;为下一层for循环搜索的起始位置。 2.终止条件&#xff1a;当startindex >len(nums)&#xff0c;r…

C++初阶—vector深度剖析及模拟实现

目录 ➡️0. 前言 &#x1f60a;1.简易框架实现 &#x1f414;1. 无参构造 &#x1f414;2. 容量capacity — 长度size() &#x1f414;3. 动态增长 — push_back—pop_back — reserve &#x1f414;4. 迭代器的实现 &#x1f414;4.front和back的实现 &#x1f60a;2…

你知道C语言的typedef关键字吗?

本篇博客主要讲解C语言中的typedef关键字。typedef的作用是类型重定义&#xff0c;可以理解为给类型起一个别名。我主要从3个方面来讲解&#xff1a; typedef内置类型。typedef自定义类型。typedef和#define的区别。 1.typedef内置类型 typedef可以给一个类型起“别名”。比如…

服务器部署前后端分离项目

服务器部署前后端分离项目 目录服务器部署前后端分离项目一、安装环境安装jdk1、在/usr/local目录下创建jdk文件夹&#xff0c;并将jdk安装包放到/usr/local/jdk包下并解压1.1通过文件传输工具将jdk包上传到服务器上1.2输入解压命令1.3解压完成&#xff0c;生成下面的文件2、配…

学习周报4/9

文章目录前言文献阅读摘要简介方法结论时间序列预测总结前言 本周阅读文献《Improving LSTM hydrological modeling with spatiotemporal deep learning and multi-task learning: A case study of three mountainous areas on the Tibetan Plateau》&#xff0c;文章主要基于…

多种方法解决SLF4J: Defaulting to no-operation (NOP) logger implementation的错误

文章目录1. 复现错误2. 分析错误3. 解决错误4. 解决该错误的其他方法1. 复现错误 今天在编写使用Quartz执行定时任务的方法&#xff0c;如下代码所示&#xff1a; public class QuartzTest {public static void main(String[] args) throws SchedulerException {// 1、创建Sch…

大数据系列——Hive理论

概述 Hive是一个数据仓库管理工具&#xff0c;将结构化的数据文件映射为一张数据库表&#xff0c;并提供类SQL&#xff08;HQL&#xff09;查询功能。由Facebook实现并开源,最后捐赠给Apache发展为顶级项目。 以RDBMS数据库为元数据存储服务&#xff0c; 以Hadoop HDFS来存储…

44.节流与防抖

目录 1 防抖 1.1 概念 1.2 应用场景 1.3 lodash防抖 1.4 手写防抖 2 节流 2.1 概念 2.2 应用场景 2.3 lodash节流 2.4 手写节流 2.5 记录视频上一次的播放位置 1 防抖 1.1 概念 防抖就是让事件触发后延迟n秒后再执行回调函数&#xff0c;在这n秒内如…