【时序数据库】时间序列数据和MongoDB第三部分-查询、分析和呈现时间序列数据...

news2025/1/15 13:06:45

在《时间序列数据和MongoDB:第1部分-简介》「时序数据库」时间序列数据与MongoDB:第一部分-简介中,我们回顾了理解数据库的查询访问模式需要询问的关键问题。在《时间序列数据和MongoDB:第2部分-模式设计最佳实践》「时序数据库」时序数据库和MongoDB第二部分-模式设计最佳实践中,我们探索了时间序列数据的各种模式设计选项,以及它们如何影响MongoDB资源。在这篇博客文章中,我们将讨论如何查询、分析和呈现存储在MongoDB中的时间序列数据。了解客户端如何连接查询您的数据库将有助于指导您设计数据模型和最佳数据库配置。有多种方式可以查询MongoDB。您可以使用本地工具,如MongoDB Shell命令行和MongoDB Compass(基于gui的查询工具)。通过编程方式,MongoDB数据是通过一个广泛的MongoDB驱动程序列表访问的。几乎所有主要编程语言都有驱动程序,包括c#、Java、NodeJS、Go、R、Python、Ruby和许多其他语言。

MongoDB还通过使用MongoDB BI连接器提供了第三方BI报告工具集成。流行的基于sql的报表工具,如Tableau、Microsoft PowerBI、QlikView和TIBCO Spotfire,可以直接利用MongoDB中的数据,而不需要将数据ETL到另一个平台进行查询。MongoDB图表,目前处于测试阶段,提供了可视化您的MongoDB数据的最快方法,不需要第三方产品或扁平化您的数据,以便它可以被sql -base BI工具读取。

在这个博客中,我们将介绍使用上述工具查询、分析和呈现时间序列数据。

使用聚合框架查询

MongoDB聚合框架允许开发人员表达执行数据准备、转换和分析的功能管道。这是通过使用一些阶段来完成的,这些阶段执行特定的操作,如分组、匹配、排序或调整数据。流经各个阶段及其相应处理的数据称为聚合管道。从概念上讲,它类似于通过Unix shell命令行管道的数据流。数据从前一阶段获得输入,工作被执行,该阶段的输出作为下一个处理阶段的输入,直到管道结束。图1显示了数据如何流经由匹配和分组阶段组成的管道。

6290263dafc83a4093d1229a5eecf681.png

图1:示例数据流经聚合管道

' $match '是这两个阶段管道中的第一个阶段。' $match '将把整个订单集合作为输入,并提供一个包含文档列表的过滤器作为输出,其中字段" status "包含" a "值。第二阶段将这些过滤后的文档作为输入,并对数据进行分组,以生成所需的查询结果作为输出。虽然这是一个简单的示例,但请记住,您可以构建非常复杂的处理管道,利用25个不同阶段类上的100多个运算符,允许您执行诸如转换、编校、排序、分组、匹配、分面搜索、图遍历和不同集合之间的联接等操作。您可以使用其他分布式数据库无法使用的方式处理数据。

对于时间序列数据,我们将使用MongoDB Compass发出一个特别查询,查找给定股票的当天最高价格。Compass是一种GUI工具,它允许您轻松地探索数据。一个有用的特性是能够可视化地构建一个聚合管道,方法是将阶段组装到画布上,然后将结果管道导出为代码,以便复制和粘贴到应用程序中。

为某只股票寻找日高点

在深入研究查询本身之前,回想一下在本博客系列的第2部分中描述的StockGen应用程序,它为我们想要跟踪的5只股票生成了一个月的股价数据。创建的两个集合之一称为“StockDocPerMinute”,它包含一个表示特定股票符号的一分钟数据的文档,如图2所示。

{
"_id" : ObjectId("5b57a8fae303d36d6df69cd3"),
"p" : {
"0" : 58.75,
"1" : 58.75,
"2" : 59.45,
…up to…
"58" : 58.57,
"59" : 59.01
},
"symbol" : "FB",
"d" : ISODate("2018-07-14T00:00:00Z")
}

图2:StockDocPerMinute文档示例

考虑这样一个场景:应用程序为给定的股票行情请求当天最高的价格。如果没有聚合框架,这个查询必须通过检索所有数据返回到应用程序并使用客户端代码计算结果来完成,或者通过在Javascript中定义一个map-reduce函数来完成。从性能或开发人员生产力的角度来看,这两种选择都不是最佳的。

注意,示例文档有一个子文档,其中包含整个分钟间隔的数据。通过使用聚合框架,我们可以轻松地处理此子文档,方法是使用$objectToArray表达式将子文档转换为数组,计算最大值并投影所需的结果。

使用MongoDB指南针,我们可以构建查询使用聚合管道构建器如下:

4cd18930d59fe20868cf688bd724d051.png

67a1b0336def9a6503c2f8d696f8b55d.png

6a5a2582b32bdbfd14c91616b690f08e.png

aa501b1377400d17f8ec1f0e0da83ebe.png

13a7848be6a599b6f432027cae711eb5.png

图7:第五阶段是$sort阶段

我们可以看到,最后一个阶段的输出显示的是每天的最大值。使用聚合管道构建器,我们不需要编写任何代码。为了便于参考,上图中MongoDB Compass构建的完整查询如下图所示:


db.getCollection('StockDocPerMinute').aggregate([
{ $match: { "symbol" : "FB" }

},
{"$project":
{
"year": {"$year": "$d"},
"month": {"$month": "$d"},
"dayOfMonth": {"$dayOfMonth": "$d"},
"p": {"$objectToArray": "$p"},
"Symbol":1
} },
{"$addFields": {"tmax": {"$max": '$p.v'}}},
{"$group": {
_id: {
year: '$year',
month: '$month',
dayOfMonth: '$dayOfMonth'
},
"DayMax": {$max: "$tmax"},
}
},
{$sort: {_id: -1}}
])

利用视图

MongoDB只读视图可以从现有的集合或其他视图创建。这些视图充当只读集合,并在读取操作期间按需计算。由于它们以另一个集合的形式出现,您可以通过限制对视图的底层集合的访问,并只给予客户端对视图的读访问权限,来添加一层安全性。如果你想了解更多关于视图访问控制的知识,请阅读博客文章“提供对MongoDB数据的最低权限访问”。

要查看视图是如何创建的,请考虑用户希望查询股票价格历史记录的场景。我们可以使用createView语法在StockDocPerMinute集合上创建一个视图,如下所示:

db.createView("ViewStock","StockDocPerMinute",
[
{"$project": {"p": {"$objectToArray": "$p"}, "d":1, "symbol":1}},
{"$unwind": "$p"},
{"$project": {"_id": 0, "symbol":1,"Timestamp": {
"$dateFromString": {"dateString":
{"$concat": [{"$dateToString":
{"format": "%Y-%m-%dT%H:%M:",
"date": "$d"}},
{"$concat": ["$p.k", "Z"]}]}}},
"price":"$p.v"}}
])

由于MongoDB只读视图是在运行时具体化的,所以每个查询都可以获得最新的结果。既然已经定义了视图,就可以像访问其他集合一样访问它了。例如,使用我们可以发出的视图查询“FB”股票的第一个价格条目:

db.ViewStock.find({ "symbol":"FB" } ) .sort({d:-1}).limit(1)

您还可以对视图使用聚合框架。下面是某个特定日期的所有“FB”股票行情数据的查询。

db.ViewStock.aggregate({ $match: {
"symbol":"FB",
"Timestamp" : { $gte: ISODate("2018-06-26"), $lt: ISODate("2018-06-27") }}},
{ $sort: { "Timestamp": -1 }
})

使用第三方BI报告工具查询时间序列数据

用户可能希望利用对第三方商业智能报告和分析工具的现有投资。要使这些讲sql的工具能够查询MongoDB中的数据,您可以使用称为MongoDB BI连接器的中间服务。

99a80093ed183d17bec225ccf40a9639.jpeg

图8:使用BI连接器使用您喜欢的基于sql的报告工具查询MongoDB数据

BI Connector服务向客户机应用程序提供一个类似于MySQL服务器的端口,并接受发出SQL查询的客户机连接。BI连接器服务然后将这些查询转换为MongoDB查询语言(MQL),并将查询提交给MongoDB数据库。结果从MongoDB返回,并被扁平化为一个表格结构,然后发送回说SQL的客户端。该流的详细信息见图8。

为了演示MongoDB BI连接器的实际应用,让我们使用Tableau Desktop和MongoDB BI连接器来使用时间序列数据。Tableau Desktop有一个MongoDB的连接选项。使用该选项并连接到BI连接器中指定的端口,我们可以看到Tableau枚举了来自MongoDB数据库的表列表,如图9所示。

9ee01b6c9a02b59c31dc6ce64e2c0973.jpeg

图9:Tableau中的数据源视图,显示从MongoDB BI连接器返回的信息

这些表实际上是我们在MongoDB中的集合。继续使用Tableau中的工作表视图,我们可以继续使用之前在本文档中创建的视图构建一个显示价格随时间变化的报告。

46a4039ba472fe10caec2295fc2dc91d.jpeg

图10:显示价格随时间变化的示例表格工作表

MongoDB图表

在MongoDB中可视化数据的最快方法是使用MongoDB图表。目前测试版中,它为用户提供了一个网络控制台,用户可以直接从存储在MongoDB中的数据构建和运行报告。有了图表,就不需要运行特殊的服务来查询MongoDB。也不需要将数据移出或将其转换为要查询的不同格式。数据可以直接查询存储在MongoDB的富文档。与其他只读连接一样,您可以将图表连接到次要副本节点,从而将分析和报告查询与服务于操作时间序列应用程序的集群的其余部分隔离开来。要查看MongoDB图表如何表示来自StockGen工具的数据,请查看价格随时间变化曲线图,如图11所示。

3b187d3ec1dc0c449e822ef799fcc877.jpeg

图11:显示价格随时间变化的MongoDB图表

在撰写本文的时候,MongoDB图表还处于测试阶段,因此细节和屏幕截图可能与最终版本有所不同。

用MongoDB分析

除了发行高级分析与MongoDB查询聚合框架,MongoDB连接器为Apache火花暴露引发所有的库,包括Scala、Java、Python和r .这使您能够使用火花大数据分析引擎处理时间序列数据的扩展分析功能的MongoDB进一步进行实时分析和机器学习。连接器将MongoDB数据物化为数据数据库和数据集,以便通过机器学习、图表、流和SQL api进行分析。Spark连接器利用MongoDB的聚合管道和丰富的二级索引来提取、过滤和处理所需的数据范围!没有浪费时间提取和加载数据到另一个数据库,以查询您的MongoDB数据使用Spark!

04c9e27be91931447eaabc6a6aba7d16.jpeg

Figure 12: Spark connector for MongoDB

c8abb4fe4d87a5eb32245daf03e870b4.png

MongoDB R驱动程序为开发人员和统计人员提供了使用惯用的、本地语言访问MongoDB、企业身份验证和对BSON数据类型的全面支持的一流体验。使用R可用的大量库,您可以查询MongoDB时间序列数据并确定局部加权回归,如图13所示。

e5cc1d87f8d15eee7754d56099888709.jpeg

图13:散点图,显示价格随时间的变化和每秒数据的平滑

MongoDB的R驱动程序可以通过CRAN R归档文件获得。一旦安装,你可以连接到你的MongoDB数据库,并返回可以在R计算中使用的数据。上面的图是用R Studio用以下代码生成的:

library(mongolite)
<p>ts=mongo(collection="StockDocPerSecond", db="Stock", url="mongodb://localhost:27020")</p>
<p>fbquery=ts$find('{ "symbol":"FB"}', fields='{"_id":0, "d":1, "p":1 }')</p>
<p>plot(fbquery$d,fbquery$p, xlab="Date", ylab="Price", main="Price over Time");</p>
<p>lines(lowess(fbquery$d,fbquery$p), col=2);

总结

虽然并非所有的数据在本质上都是时间序列,但越来越多的数据可以被归类为时间序列——这是由允许我们实时而不是批量利用数据流的技术所推动的。每个行业、每个公司都需要对时间序列数据进行查询、分析和报告。真正的业务价值来自于从数据中获得的分析和见解。MongoDB使您能够收集、分析和处理环境中的每个时间序列数据。在这个由三部分组成的系列文章中,我们讨论了一些与特定应用程序需求相关的发人深省的问题。在第二篇博客文章中,我们介绍了几种不同的时间序列模式设计及其对MongoDB性能的影响。最后,我们总结了如何使用MongoDB聚合框架和MongoDB Compass查询时间序列数据,以及使用BI连接器和分析语言(如R)等其他方法。

原型是一回事,但有效地处理TB级数据则是另一回事。使用MongoDB可以很容易地水平扩展时间序列工作负载。通过使用副本集,只读客户端可以连接到副本集辅助服务器来执行查询,而让主服务器专注于写操作。此外,读重工作负载和写重工作负载都可以通过分片进行水平伸缩。虽然对MongoDB架构的深入分析超出了这些博客文章的范围,但你可以在MongoDB架构白皮书中找到很多有用的信息。

物联网(IoT)用例生成过多的时间序列数据。更大的物联网解决方案包括支持用于数据摄入的各种硬件和软件设备,支持实时和历史分析、安全性、高可用性和大规模管理时间序列数据等。MongoDB正在为全球关键的物联网应用提供动力。

本文 :https://architect.pub/time-series-data-and-mongodb-part-3-querying-analyzing-and-presenting-time-series-data
讨论:知识星球【首席架构师圈】或者加微信小号【ca_cto】或者加QQ群【792862318】
公众号

【jiagoushipro】
【超级架构师】
精彩图文详解架构方法论,架构实践,技术原理,技术趋势。
我们在等你,赶快扫描关注吧。
6e077ea34e6ff4fa049d01736ab68a89.jpeg
微信小号

【ca_cea】
50000人社区,讨论:企业架构,云计算,大数据,数据科学,物联网,人工智能,安全,全栈开发,DevOps,数字化.

1f1c30ede11a4ac0a7bfdc1f6d9363ff.jpeg

QQ群

【285069459】深度交流企业架构,业务架构,应用架构,数据架构,技术架构,集成架构,安全架构。以及大数据,云计算,物联网,人工智能等各种新兴技术。
加QQ群,有珍贵的报告和干货资料分享。

7c7fcd1da39273090dd5aaa3a56b3d43.jpeg

视频号【超级架构师】
1分钟快速了解架构相关的基本概念,模型,方法,经验。
每天1分钟,架构心中熟。

1952c5f498df3d54bdabddfbfb556b60.jpeg

知识星球【首席架构师圈】向大咖提问,近距离接触,或者获得私密资料分享。

91d80b97c21348ee605cca03e4e88fe3.jpeg

喜马拉雅【超级架构师】路上或者车上了解最新黑科技资讯,架构心得。【智能时刻,架构君和你聊黑科技】
知识星球认识更多朋友,职场和技术闲聊。知识星球【职场和技术】
领英Harryhttps://www.linkedin.com/in/architect-harry/
领英群组领英架构群组
https://www.linkedin.com/groups/14209750/
微博‍‍【超级架构师】智能时刻‍
哔哩哔哩【超级架构师】

08d9572e73124a4d14f94f9d9e8d8c0b.jpeg

抖音【cea_cio】超级架构师

feb86632c4c0a56d4d238c405b6557be.jpeg

快手【cea_cio_cto】超级架构师

1a4692218b1336f847cb536217e036b5.jpeg

小红书【cea_csa_cto】超级架构师

d2ef42897daa2f08157a37abeb9a40bd.jpeg

网站CIO(首席信息官)https://cio.ceo
网站CIO,CTO和CDOhttps://cioctocdo.com
网站架构师实战分享https://architect.pub   
网站程序员云开发分享https://pgmr.cloud
网站首席架构师社区https://jiagoushi.pro
网站应用开发和开发平台https://apaas.dev
网站开发信息网https://xinxi.dev
网站超级架构师https://jiagou.dev
网站企业技术培训https://peixun.dev
网站程序员宝典https://pgmr.pub    
网站开发者闲谈https://blog.developer.chat
网站CPO宝典https://cpo.work
网站首席安全官https://cso.pub    ‍
网站CIO酷https://cio.cool
网站CDO信息https://cdo.fyi
网站CXO信息https://cxo.pub

谢谢大家关注,转发,点赞和点在看。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/415881.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java实验课的学习笔记(二)类的简单使用

本文章就讲的是很基础的类的使用 重点大概就是类的构造函数以及一些很基础的东西。 实验内容是些老生常谈的东西&#xff0c;Complex类&#xff0c;在当初学C面向对象的时候也是这个样子展开的。 内容如以下&#xff1a; public class Complex {float real;float imag;public…

APK瘦身

先看下APK打包流程&#xff1a;APK打包流程_贺兰猪的博客-CSDN博客 知道了APK打包流程后想要瘦身&#xff0c;其实无非就是把整个APK的一些文件进行一个瘦身。 看下apk的这个文件。包括class、资源&#xff0c;资源生成arsc(资源映射表)&#xff0c;manifest清单&#xff0c;…

快排(非递归)及计数排序算法

都学了递归版的快速排序为何还要再学非递归实现&#xff1f;由于在递归过程中&#xff0c;如果数据量过大&#xff0c;那么实现时容易导致栈溢出&#xff0c;虽然代码没有问题&#xff0c;但是就是会崩&#xff0c;因此要将其改为非递归来实现 文章目录一、快速排序&#xff08…

如何使用Mac远程控制Windows电脑?

在你开始之前&#xff0c;设置您要远程处理的 Windows 计算机。 先安装 Microsoft Remote Desktop。 您可以在“应用程序”文件夹中检查它。 如果在个人计算机上安装&#xff0c;请转到 Apple App Store 并下载 Microsoft Remote Desktop。 如果在 TXST 计算机上安装&#xff0…

【C语言】递归解决经典题目(汉诺塔问题、青蛙跳台阶问题)

简单不先于复杂&#xff0c;而是在复杂之后。 目录 1. 汉诺塔问题 1.1 简介及思路 1.2 代码实现 2. 青蛙跳台阶问题 2.1 简介及思路 2.2 代码实现 1. 汉诺塔问题 1.1 简介及思路 汉诺塔问题是一种经典的递归问题&#xff0c;起源于印度传说中的塔 of Brahma。问题描…

手把手教你学习IEC104协议和编程实现 十 故障事件与复位进程

故障事件 目的 在IEC104普遍应用之前,据我了解多个协议,再综合自动化协议中,有这么一个概念叫“事故追忆”,意思是当变电站出现事故的时候,不但要记录事故的时间,还需记录事故前后模拟量的数据,从而能从一定程度上分析事故产生的原因,这个模拟量就是和今天讲解的故障…

silvaco 仿真BJT

本次实验为利用silvaco仿真BJT器件&#xff0c;分析不同p区厚度以及p区不同掺杂浓度研究其电流增益的变化。 一、器件要求 区域 掺杂方式 掺杂浓度或 峰值浓度&#xff08;/cm3&#xff09; 厚度&#xff08;um&#xff09; 宽度&#xff08;um&#xff09; N-漂移区 均匀…

微服务框架【笔记-Nacos注册中心】

接上篇&#xff0c;继续学习微服务框架中的Nacos注册中心。 Nacos注册中心 一、认识和安装Nacos 1.认识Nacos Nacos 是阿里巴巴的产品&#xff0c;现在是 SpringCloud 中的一个组件。相比 Eureka 功能更加丰富。 2.安装Nacos 下面给大家展示windows安装Nacos步骤&#xff1a;…

网络互联技术与实践教程(汪双硕、姚羽)——第四章 路由技术

第四章 路由技术 4.1 路由原理 路由是指通过相互连接的网络将数据从源地点转发到目标地点的过程。在路由过程中&#xff0c;数据通常会经过一个或多个中间节点&#xff0c;路由发生在网络层。路由包含两个主要的动作&#xff1a;确定最佳路径和通过网络传输信息&#xff0c;后…

刷题笔记【6】| 快速刷完67道剑指offer(Java版)

本文已收录于专栏&#x1f33b;《刷题笔记》文章目录前言&#x1f3a8; 1、包含min函数的栈题目描述思路&#xff08;双栈法&#xff09;&#x1f3a8; 2、栈的压入弹出序列题目描述思路&#xff08;辅助栈&#xff09;&#x1f3a8; 3、从上往下打印二叉树题目描述思路&#x…

chapter-4-数据库语句

以下课程来源于MOOC学习—原课程请见&#xff1a;数据库原理与应用 考研复习 概述 SQL发展 注&#xff1a;关键词是哪些功能&#xff0c;尤其第一个create alter drop是定义功能 1.SQL功能强大&#xff0c;实现了数据定义、数据操纵、数据控制等功能 2.SQL语言简洁&#xff…

【Java版oj】day26跳台阶扩展问题、快到碗里来

目录 一、跳台阶扩展问题 &#xff08;1&#xff09;原题再现 &#xff08;2&#xff09;问题分析 &#xff08;3&#xff09;完整代码 二、快到碗里来 &#xff08;1&#xff09;原题再现 &#xff08;2&#xff09;问题分析 &#xff08;3&#xff09;完整代码 一、跳台…

tomcat配置虚拟路径映射磁盘文件列表图片回显和放大功能实现springboot项目的文件虚拟路径映射

tomcat映射磁盘图片1.以E盘为例&#xff0c;在E盘创建目录testReceive2.配置tomcat虚拟路径映射e盘本地文件3.代码层面创建上传文件&#xff08;此处为图片&#xff09;工具类3.1&#xff08;校验图片格式、获取当前主机ip、上传图片至本机目的地&#xff0c;获取上传图片地址&…

javaWeb(HTTP、Tomcat、Servlet)

目录 HTTP Web 服务器 - Tomcat 简介 基本使用&#xff1a;下载、安装、卸载、启动、关闭、配置、部署项目 IDEA中创建 Maven Web项目​编辑 IDEA中使用 Tomcat Servlet 快速入门 Servlet 执行流程 Servlet 生命周期 Servlet 体系结构 Servlet urlPattern配置 XM…

【从零开始学Skynet】实战篇《球球大作战》(五):gateway代码设计(中)

1、编码和解码 我们来实现两个辅助方法str_unpack和str_pack&#xff0c;用于消息的解码和编码。 &#xff08;1&#xff09;str_unpack代码 local str_unpack function(msgstr)local msg {}while true dolocal arg, rest string.match( msgstr, "(.-),(.*)")if…

【web自动化测试】

文章目录web自动化测试第一章 web自动化入门1.什么是自动化&#xff1f;1.1 优点2.什么是自动化测试&#xff1f;2.1 自动化测试能解决什么问题&#xff1f;2.2 自动化相关知识2.2.1优点2.2.2 误区2.3 自动化测试分类3.什么是Web自动化测试&#xff1f;3.1 什么Web项目适合做自…

Flutter 了解 Element

一 Element 概念 这个玩意的概念。到底是什么 &#xff1f; 官方解释是在树中特定位置的实例。 二 继承关系 element 有 ComponentElement 和 RenderObjectElement 之分 1 ComponentElement class StatelessElement extends ComponentElement class StatefulElement extend…

计及调度经济性的光热电站储热容量配置方法

目录 1 主要内容 目标函数 光热电站能量传递过程 2 部分程序 3 程序结果 4 程序链接 1 主要内容 该程序复现《计及调度经济性的光热电站储热容量配置方法》模型&#xff0c;综合考虑火电机组发电成本、光热发电并网消纳的环境效益和运行维护成本、系统旋转备用成本等调度…

rk3568点亮LCD(RGB)

rk3568 Android11/12 调试 RGB 屏 RGB一般是指RGB色彩模型(RGB color model)&#xff0c;是工业界的一种颜色标准。RGB接口占用的资源较多&#xff0c;所以这个接口的LCD刷新率非常快&#xff0c;软件控制也比较简单。缺点是控制需要增加电路&#xff0c;软件初始化需要增加程…

【BOM浏览器对象模型】

BOM浏览器对象模型1 本节目标2 BOM概述3 window对象的常见事件3.1 窗口加载事件3.2 调整窗口大小事件4 定时器4.1 两种定时器4.2 setTimeout()定时器4.3 停止setTimeout()定时器4.4 setInterval()定时器4.5 停止setInterval()定时器4.6 this指向问题5 JS执行队列5.1 JS是单线程…