445. 两数相加 II
给你两个 非空 链表来代表两个非负整数。数字最高位位于链表开始位置。它们的每个节点只存储一位数字。将这两数相加会返回一个新的链表。
你可以假设除了数字 0 之外,这两个数字都不会以零开头。
示例1:
输入:l1 = [7,2,4,3], l2 = [5,6,4]
输出:[7,8,0,7]
示例2:
输入:l1 = [2,4,3], l2 = [5,6,4]
输出:[8,0,7]
示例3:
输入:l1 = [0], l2 = [0]
输出:[0]
提示:
- 链表的长度范围为 [1, 100]
- 0 <= node.val <= 9
- 输入数据保证链表代表的数字无前导 0
进阶: 如果输入链表不能翻转该如何解决?
思路:
法一:
- 先将两个字符串翻转,再相加;
- 相加结果头插法,插入新链表。
法二:进阶
- 链表中数位的顺序与我们做加法的顺序是相反的,为了逆序处理所有数位,我们可以使用栈:
- 把所有数字压入栈中,再依次取出相加。
- 计算过程中需要注意进位的情况。
代码:(Java、C++)
法一:
Java
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
ListNode tem = l1.next;
ListNode pre = l1.next;
l1.next = null;
while(tem != null){//l1翻转
tem = tem.next;
pre.next = l1;
l1 = pre;
pre = tem;
}
tem = l2.next;
pre = l2.next;
l2.next = null;
while(tem != null){//l2翻转
tem = tem.next;
pre.next = l2;
l2 = pre;
pre = tem;
}
tem = null;
int carry = 0;
while(l1 != null || l2 != null){//相加
if(l1 != null){
carry += l1.val;
pre = l1;
l1 = l1.next;
}
if(l2 != null){
carry += l2.val;
pre = l2;
l2 = l2.next;
}
pre.val = carry % 10;
carry /= 10;
pre.next = tem;
tem = pre;
}
pre = carry == 0 ? null : new ListNode(1);
if(pre != null){
pre.next = tem;
tem = pre;
}
return tem;
}
}
C++
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {
ListNode* tem = l1->next;
ListNode* pre = l1->next;
l1->next = NULL;
while(tem != NULL){//l1翻转
tem = tem->next;
pre->next = l1;
l1 = pre;
pre = tem;
}
tem = l2->next;
pre = l2->next;
l2->next = NULL;
while(tem != NULL){//l2翻转
tem = tem->next;
pre->next = l2;
l2 = pre;
pre = tem;
}
tem = NULL;
int carry = 0;
while(l1 != NULL || l2 != NULL){//相加
if(l1 != NULL){
carry += l1->val;
pre = l1;
l1 = l1->next;
}
if(l2 != NULL){
carry += l2->val;
pre = l2;
l2 = l2->next;
}
pre->val = carry % 10;
carry /= 10;
pre->next = tem;
tem = pre;
}
pre = carry == 0 ? NULL : new ListNode(1);
if(pre != NULL){
pre->next = tem;
tem = pre;
}
return tem;
}
};
法二:进阶
Java
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
Deque<Integer> stack1 = new ArrayDeque<Integer>();
Deque<Integer> stack2 = new ArrayDeque<Integer>();
while(l1 != null){
stack1.push(l1.val);
l1 = l1.next;
}
while(l2 != null){
stack2.push(l2.val);
l2 = l2.next;
}
int carry = 0;
ListNode ans = null;
while(!stack1.isEmpty() || !stack2.isEmpty() || carry != 0){
carry += stack1.isEmpty() ? 0 : stack1.pop();
carry += stack2.isEmpty() ? 0 : stack2.pop();
ListNode tem = new ListNode(carry % 10);
carry /= 10;
tem.next = ans;
ans = tem;
}
return ans;
}
}
C++
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {
stack<int> stack1, stack2;
while(l1 != NULL){
stack1.push(l1->val);
l1 = l1->next;
}
while(l2 != NULL){
stack2.push(l2->val);
l2 = l2->next;
}
int carry = 0;
ListNode* ans = NULL;
while(!stack1.empty() || !stack2.empty() || carry != 0){
carry += stack1.empty() ? 0 : stack1.top();
carry += stack2.empty() ? 0 : stack2.top();
if (!stack1.empty()) stack1.pop();
if (!stack2.empty()) stack2.pop();
ListNode* tem = new ListNode(carry % 10);
carry /= 10;
tem->next = ans;
ans = tem;
}
return ans;
}
};
运行结果:
复杂度分析:
- 时间复杂度: O ( m a x ( m , n ) ) O(max(m,n)) O(max(m,n)),其中 m m m 和 n n n 分别为两个链表的长度。我们需要遍历两个链表的全部位置,而处理每个位置只需要 O ( 1 ) O(1) O(1)的时间。
- 空间复杂度: O ( m + n ) O(m+n) O(m+n),,法一为 O ( 1 ) O(1) O(1); 法二为 O ( m + n ) O(m+n) O(m+n),其中 m m m 和 n n n 分别为两个链表的长度。空间复杂度主要取决于我们把链表内容放入栈中所用的空间。
题目来源:力扣。
放弃一件事很容易,每天能坚持一件事一定很酷,一起每日一题吧!
关注我 leetCode专栏,每日更新!