一般讲到GMM就会讲到EM。
我不过多的介绍EM算法。这里只是举一些例子来看看真实的GMM怎么用EM算的。
一、GMM的作用
记住GMM的作用,就是聚类!
二、GMM有hard和soft两种
hard-GMM和soft-GMM是为了对标k-means和soft k-means。在中文互联网上搜索到的GMM,其实基本都是soft-GMM。
所以这里我先介绍一下hard-GMM。
三、hard-GMM
1)已知初始化簇, B 1 = { x 1 , x 2 } , B 2 = { x 3 , x 4 , x 5 , x 6 } B1 = \{x_1, x_2\}, B2 = \{x_3,x_4,x_5,x_6\} B1={x1,x2},B2={x3,x4,x5,x6}.
初始化两个簇权重分别为 w 1 = 2 / 6 = 1 / 3 , w 2 = 4 / 6 = 2 / 3 w_1 = 2/6 = 1/3, w_2 = 4/6 = 2/3 w1=2/6=1/3,w2=4/6=2/3.
由此可知,两个簇的高斯分布参数为:
μ
1
=
(
0
+
0.5
)
/
2
=
0.25
\mu_1 = (0+0.5)/2 = 0.25
μ1=(0+0.5)/2=0.25
μ
2
=
(
1
+
2
+
3
+
4
)
/
4
=
2.5
\mu_2 = (1+2+3+4)/4 = 2.5
μ2=(1+2+3+4)/4=2.5.
σ
1
2
=
0.2
5
2
\sigma_1 ^ 2 = 0.25^2
σ12=0.252,
σ
2
2
=
1.25
\sigma_2^2 = 1.25
σ22=1.25
概率密度
P
^
(
x
)
\hat{P}(x)
P^(x)
=
w
1
N
(
x
;
μ
1
,
σ
1
2
)
+
w
2
N
(
x
;
μ
2
,
σ
2
2
)
= w_1N(x;\mu_1, \sigma_1^2)+w_2N(x;\mu_2, \sigma_2^2)
=w1N(x;μ1,σ12)+w2N(x;μ2,σ22)
=
1
/
3
N
(
x
;
0.25
,
0.2
5
2
)
+
2
/
3
N
(
x
;
2.5
,
1.25
)
= 1/3N(x;0.25, 0.25^2)+2/3N(x;2.5, 1.25)
=1/3N(x;0.25,0.252)+2/3N(x;2.5,1.25)
查表知:
P ^ ( x 1 ) = 0.342 \hat{P}(x_1) = 0.342 P^(x1)=0.342 | P ^ ( x 2 ) = 0.371 \hat{P}(x_2) = 0.371 P^(x2)=0.371 |
---|---|
P ^ ( x 3 ) = 0.103 \hat{P}(x3) = 0.103 P^(x3)=0.103 | P ^ ( x 4 ) = 0.215 \hat{P}(x4) = 0.215 P^(x4)=0.215 |
P ^ ( x 5 ) = 0.215 \hat{P}(x5) = 0.215 P^(x5)=0.215 | P ^ ( x 6 ) = 0.097 \hat{P}(x6) = 0.097 P^(x6)=0.097 |
E i n = − ∑ n = 1 6 l o g P ^ ( x n ) = 9.748 E_{in} = -\sum\limits_{n=1}^{6}log\hat{P}(x_n) = 9.748 Ein=−n=1∑6logP^(xn)=9.748
2)使用EM算法迭代直至收敛,需要写出每一步的聚类结果和模型参数
E-step:
计算归属度
λ
i
j
\lambda_{ij}
λij,表示数据点
i
i
i对簇
j
j
j的归属度。
λ
i
j
=
w
j
N
(
x
i
;
μ
j
,
σ
j
2
)
\lambda_{ij} = w_jN(x_i; \mu_j, \sigma_j^2)
λij=wjN(xi;μj,σj2)
(1)对数据点
x
1
x_1
x1来说,对簇1簇2的归属度分别为:
λ
11
\lambda_{11}
λ11
=
w
1
N
(
x
1
;
μ
1
,
σ
1
2
)
= w_1N(x_1; \mu_1, \sigma_1^2)
=w1N(x1;μ1,σ12)
=
1
/
3
N
(
0
;
0.25
,
0.2
5
2
)
= 1/3N(0;0.25, 0.25^2)
=1/3N(0;0.25,0.252)
=
0.323
= 0.323
=0.323
λ
12
\lambda_{12}
λ12
=
w
2
N
(
x
1
;
μ
2
,
σ
2
2
)
= w_2N(x_1; \mu_2, \sigma_2^2)
=w2N(x1;μ2,σ22)
=
2
/
3
N
(
0
;
2.5
,
1.25
)
= 2/3N(0;2.5, 1.25)
=2/3N(0;2.5,1.25)
=
0.019
= 0.019
=0.019
λ
11
>
λ
12
\lambda_{11} > \lambda_{12}
λ11>λ12
说明该步下,数据点1归属到簇1
(2)对数据点
x
3
x_3
x3来说,对簇1簇2的归属度分别为:
λ
31
\lambda_{31}
λ31
=
w
1
N
(
x
3
;
μ
1
,
σ
1
2
)
= w_1N(x_3; \mu_1, \sigma_1^2)
=w1N(x3;μ1,σ12)
=
1
/
3
N
(
1
;
0.25
,
0.2
5
2
)
= 1/3N(1;0.25, 0.25^2)
=1/3N(1;0.25,0.252)
=
4
/
(
3
2
π
)
∗
e
−
4.5
)
= 4/(3\sqrt{2\pi})*e^{-4.5)}
=4/(32π)∗e−4.5)
=
0.006
=0.006
=0.006
λ
32
\lambda_{32}
λ32
=
w
2
N
(
x
3
;
μ
2
,
σ
2
2
)
= w_2N(x_3; \mu_2, \sigma_2^2)
=w2N(x3;μ2,σ22)
=
2
/
3
N
(
1
;
2.5
,
1.25
)
= 2/3N(1;2.5, 1.25)
=2/3N(1;2.5,1.25)
=
(
2
/
1.25
)
/
(
3
2
π
)
∗
e
−
0.9
= (2/\sqrt{1.25})/(3\sqrt{2\pi})*e^{-0.9}
=(2/1.25)/(32π)∗e−0.9
=
0.097
=0.097
=0.097
λ
31
<
λ
32
\lambda_{31} < \lambda_{32}
λ31<λ32
说明该步下,数据点3归属到簇2
(3)同理
x
2
x_2
x2归属到簇1,
x
4
,
x
5
,
x
6
x_4,x_5,x_6
x4,x5,x6归属到簇2
所以最终我们还是得到
B
1
=
{
x
1
,
x
2
}
,
B
2
=
{
x
3
,
x
4
,
x
5
,
x
6
}
B1 = \{x1, x2\}, B2 = \{x3,x4,x5,x6\}
B1={x1,x2},B2={x3,x4,x5,x6}. 也就是说已经收敛,解答完毕。
但如果还没有收敛怎么办?
假设得到了
B
1
=
{
x
1
,
x
2
,
x
3
}
,
B
2
=
{
x
4
,
x
5
,
x
6
}
B1 = \{x_1, x_2, x_3\}, B2 = \{x_4,x_5,x_6\}
B1={x1,x2,x3},B2={x4,x5,x6}
那就再通过M步更新高斯模型参数
M-step
两个簇权重分别为
w
1
=
2
/
6
=
1
/
3
,
w
2
=
4
/
6
=
2
/
3
w_1 = 2/6 = 1/3, w_2 = 4/6 = 2/3
w1=2/6=1/3,w2=4/6=2/3
两个簇的高斯分布为
μ
1
=
(
0
+
0.5
+
1
)
/
3
=
0.5
\mu_1 = (0+0.5+1)/3 = 0.5
μ1=(0+0.5+1)/3=0.5
μ
2
=
(
2
+
3
+
4
)
/
3
=
3
\mu_2 = (2+3+4)/3 = 3
μ2=(2+3+4)/3=3
σ
1
2
=
1
/
6
\sigma_1^2 = 1/6
σ12=1/6
σ
2
2
=
2
/
3
\sigma_2^2 =2/3
σ22=2/3
概率密度
P
^
(
x
)
\hat{P}(x)
P^(x)
=
w
1
N
(
x
;
μ
1
,
σ
1
2
)
+
w
2
N
(
x
;
μ
2
,
σ
2
2
)
= w_1N(x;\mu_1, \sigma_1^2)+w_2N(x;\mu_2, \sigma_2^2)
=w1N(x;μ1,σ12)+w2N(x;μ2,σ22)
=
1
/
3
N
(
x
;
0.5
,
1
/
6
)
+
2
/
3
N
(
x
;
3
,
2
/
3
)
= 1/3N(x;0.5, 1/6)+2/3N(x;3, 2/3)
=1/3N(x;0.5,1/6)+2/3N(x;3,2/3)
这样就可以计算新一轮的E-step,如此反复,直至数据点的归属簇不再变化
类比一下:hard-GMM中,E-step就像是k-means中的将各数据点归属到各个簇,M-step就像是k-means计算新的簇中心
四、soft-GMM
第1)问没有区别,第2)问开始重新写soft-GMM版本的
2)使用EM算法迭代直至收敛,需要写出每一步的聚类结果和模型参数
E-step:
计算归属度
λ
i
j
\lambda_{ij}
λij,表示数据点
i
i
i对簇
j
j
j的归属度。
λ
i
j
=
w
j
N
(
x
i
;
μ
j
,
σ
j
2
)
\lambda_{ij} = w_jN(x_i; \mu_j, \sigma_j^2)
λij=wjN(xi;μj,σj2)
(1)对数据点
x
1
x_1
x1来说,对簇1簇2的归属度分别为:
λ
11
\lambda_{11}
λ11
=
w
1
N
(
x
1
;
μ
1
,
σ
1
2
)
= w_1N(x_1; \mu_1, \sigma_1^2)
=w1N(x1;μ1,σ12)
=
1
/
3
N
(
0
;
0.25
,
0.2
5
2
)
= 1/3N(0;0.25, 0.25^2)
=1/3N(0;0.25,0.252)
=
0.323
= 0.323
=0.323
λ
12
\lambda_{12}
λ12
=
w
2
N
(
x
1
;
μ
2
,
σ
2
2
)
= w_2N(x_1; \mu_2, \sigma_2^2)
=w2N(x1;μ2,σ22)
=
2
/
3
N
(
0
;
2.5
,
1.25
)
= 2/3N(0;2.5, 1.25)
=2/3N(0;2.5,1.25)
=
0.019
= 0.019
=0.019
与hard-GMM不同的时,我们需要计算归一化后的归属度:
λ
11
′
=
λ
11
λ
11
+
λ
12
=
0.943
\lambda_{11}' = \frac{\lambda_{11}}{\lambda_{11}+\lambda_{12}} = 0.943
λ11′=λ11+λ12λ11=0.943
λ
12
′
=
λ
12
λ
11
+
λ
12
=
0.057
\lambda_{12}' = \frac{\lambda_{12}}{\lambda_{11}+\lambda_{12}} = 0.057
λ12′=λ11+λ12λ12=0.057
λ
11
=
λ
11
′
\lambda_{11} = \lambda_{11}'
λ11=λ11′
λ
12
=
λ
12
′
\lambda_{12} = \lambda_{12}'
λ12=λ12′
(2)对数据点
x
3
x_3
x3来说,对簇1簇2的归属度分别为:
λ
31
\lambda_{31}
λ31
=
w
1
N
(
x
3
;
μ
1
,
σ
1
2
)
= w_1N(x_3; \mu_1, \sigma_1^2)
=w1N(x3;μ1,σ12)
=
1
/
3
N
(
1
;
0.25
,
0.2
5
2
)
= 1/3N(1;0.25, 0.25^2)
=1/3N(1;0.25,0.252)
=
4
/
(
3
2
π
)
∗
e
−
4.5
)
= 4/(3\sqrt{2\pi})*e^{-4.5)}
=4/(32π)∗e−4.5)
=
0.006
=0.006
=0.006
λ
32
\lambda_{32}
λ32
=
w
2
N
(
x
3
;
μ
2
,
σ
2
2
)
= w_2N(x_3; \mu_2, \sigma_2^2)
=w2N(x3;μ2,σ22)
=
2
/
3
N
(
1
;
2.5
,
1.25
)
= 2/3N(1;2.5, 1.25)
=2/3N(1;2.5,1.25)
=
(
2
/
1.25
)
/
(
3
2
π
)
∗
e
−
0.9
= (2/\sqrt{1.25})/(3\sqrt{2\pi})*e^{-0.9}
=(2/1.25)/(32π)∗e−0.9
=
0.097
=0.097
=0.097
计算归一化后的归属度:
λ
31
′
=
λ
31
λ
31
+
λ
32
=
0.058
\lambda_{31}' = \frac{\lambda_{31}}{\lambda_{31}+\lambda_{32}} = 0.058
λ31′=λ31+λ32λ31=0.058
λ
32
′
=
λ
32
λ
31
+
λ
32
=
0.942
\lambda_{32}' = \frac{\lambda_{32}}{\lambda_{31}+\lambda_{32}} = 0.942
λ32′=λ31+λ32λ32=0.942
λ
31
=
λ
31
′
\lambda_{31} = \lambda_{31}'
λ31=λ31′
λ
32
=
λ
32
′
\lambda_{32} = \lambda_{32}'
λ32=λ32′
(3)同理计算剩下的数据点的归属度
soft-GMM如何认为算法已经收敛了呢?
当两次归属度的值变化量 < tolerance即可,比如我们这里设定 tolerance=0.02
我们这里再通过M步更新高斯模型参数
M-step
两个簇权重分别为
w
1
=
∑
i
=
1
6
λ
i
1
=
0.312
,
w
2
=
∑
i
=
1
6
λ
i
2
=
0.688
w_1 = \sum\limits_{i=1}^{6}\lambda_{i1} = 0.312, w_2 = \sum\limits_{i=1}^{6}\lambda_{i2} = 0.688
w1=i=1∑6λi1=0.312,w2=i=1∑6λi2=0.688
两个簇的高斯分布为
μ
1
=
∑
i
=
1
6
λ
i
1
x
i
∑
i
=
1
6
λ
i
1
=
(
λ
11
x
1
+
λ
21
x
2
+
.
.
.
+
λ
61
x
6
)
λ
11
+
λ
21
+
.
.
.
+
λ
61
=
0.263
\mu_1 = \frac{\sum\limits_{i=1}^{6}\lambda_{i1}x_i}{\sum\limits_{i=1}^{6}\lambda_{i1}} = \frac{(\lambda_{11}x_1 + \lambda_{21}x_2 + ... + \lambda_{61}x_6) }{\lambda_{11}+\lambda_{21}+...+\lambda_{61}}= 0.263
μ1=i=1∑6λi1i=1∑6λi1xi=λ11+λ21+...+λ61(λ11x1+λ21x2+...+λ61x6)=0.263
μ 2 = ∑ i = 1 6 λ i 2 x i ∑ i = 1 6 λ i 2 = 2.424 \mu_2 = \frac{\sum\limits_{i=1}^{6}\lambda_{i2}x_i}{\sum\limits_{i=1}^{6}\lambda_{i2}} =2.424 μ2=i=1∑6λi2i=1∑6λi2xi=2.424
σ 1 2 = ∑ i = 1 6 λ i 1 ( x i − μ 1 ) 2 ∑ i = 1 6 λ i 1 = 0.279 \sigma_1^2 = \frac{\sum\limits_{i=1}^{6}\lambda_{i1}(x_i-\mu_1)^2}{\sum\limits_{i=1}^{6}\lambda_{i1}} = 0.279 σ12=i=1∑6λi1i=1∑6λi1(xi−μ1)2=0.279
σ 2 2 = ∑ i = 1 6 λ i 2 ( x i − μ 2 ) 2 ∑ i = 1 6 λ i 2 = 1.180 \sigma_2^2 = \frac{\sum\limits_{i=1}^{6}\lambda_{i2}(x_i-\mu_2)^2}{\sum\limits_{i=1}^{6}\lambda_{i2}} = 1.180 σ22=i=1∑6λi2i=1∑6λi2(xi−μ2)2=1.180
概率密度
P
^
(
x
)
\hat{P}(x)
P^(x)
=
w
1
N
(
x
;
μ
1
,
σ
1
2
)
+
w
2
N
(
x
;
μ
2
,
σ
2
2
)
= w_1N(x;\mu_1, \sigma_1^2)+w_2N(x;\mu_2, \sigma_2^2)
=w1N(x;μ1,σ12)+w2N(x;μ2,σ22)
=
0.312
N
(
x
;
0.263
,
0.279
)
+
0.688
N
(
x
;
2.424
,
1.180
)
= 0.312N(x;0.263, 0.279) + 0.688N(x;2.424, 1.180)
=0.312N(x;0.263,0.279)+0.688N(x;2.424,1.180)
这样就可以计算新一轮的E-step,如此反复,直至收敛(参数是否收敛或对数似然函数收敛)
参数收敛比方说第19轮和第20轮迭代时:
iter | μ 1 \mu_1 μ1 | μ 2 \mu_2 μ2 | σ 1 2 \sigma_1^2 σ12 | σ 1 2 \sigma_1^2 σ12 |
---|---|---|---|---|
19 | 0.485 | 2.923 | 0.408 | 0.896 |
20 | 0.485 | 2.923 | 0.408 | 0.895 |
此时指定的参数已经的变化量已经 < tolerance = 0.02,可以认为已经收敛。
类比一下:soft-GMM中,E-step就像是k-means中的将各数据点对各个簇的归属度,M-step就像是k-means计算新的簇中心
五、python复现代码
"""
import numpy as np
import time
def CreateData(mu1, sigma1, alpha1, mu2, sigma2, alpha2, length):
"""
生成数据集
输入两个高斯分布的真实参数
:param mu1:
:param sigma1:
:param alpha1:
:param mu2:
:param sigma2:
:param alpha2:
:param length:
:return: 通过两个高斯分布生成的数据集
"""
# 生成第一个分模型的数据
First = np.random.normal(loc=mu1, scale=sigma1, size=int(length * alpha1))
# 生成第二个分模型的数据
Second = np.random.normal(loc=mu2, scale=sigma2, size=int(length * alpha2))
# 混合两个数据
ObservedData = np.concatenate((First, Second), axis=0) # 行拼接,生成的还是一列
# 打乱顺序(打不打乱其实对算法没有影响)
np.random.shuffle(ObservedData)
return ObservedData
def Cal_Gaussian(Data, mu, sigma):
"""
根据高斯密度函数计算
:param Data:数据集
:param mu: 当前的高斯分布的参数
:param sigma:
:return: GaussianP:概率
"""
GaussianP = 1 / (sigma * np.sqrt(2 * np.pi)) \
* np.exp(-1 * np.square(Data - mu) / (2 * np.square(sigma)))
return GaussianP
def E_step(Data, mu1, sigma1, alpha1, mu2, sigma2, alpha2):
"""
E步
:param Data: 使用的是ndarray格式
:param mu1:
:param sigma1:
:param alpha1:
:param mu2:
:param sigma2:
:param alpha2:
:return: Gamma1; Gamma2:响应度
"""
# 计算样本对每个高斯混合模型的响应度(归属度,gamma)
# 因此得到的数列结果中,包含该分模型对每个样本的计算响应度公式的分子项
print(f" Cal_Gaussian(Data, mu1, sigma1) = { Cal_Gaussian(Data, mu1, sigma1)}")
Gamma1 = alpha1 * Cal_Gaussian(Data, mu1, sigma1) # 是一个列表,保存了每个样本对高斯模型1的响应度
print(f" Cal_Gaussian(Data, mu2, sigma2) = { Cal_Gaussian(Data, mu2, sigma2)}")
Gamma2 = alpha2 * Cal_Gaussian(Data, mu2, sigma2)
# 响应度归一化
Gamma1 = Gamma1 / (Gamma1 + Gamma2)
# Gamma2 = Gamma2 / (Gamma1 + Gamma2) # 注意原来是这样写的,但是Gamma1已经在上一行变化了,不能再用来归一化
Gamma2 = 1 - Gamma1
return Gamma1, Gamma2
def M_step(Data, mu1_old, mu2_old, Gamma1, Gamma2):
"""
M步
:param Data:
:param mu1_old: 当前高斯分布的参数
:param mu2_old:
:param Gamma1: 对高斯分布1的响应度
:param Gamma2: 对高斯分布2的响应度
:return: 新的高斯分布的参数
"""
# 计算新的参数mu
mu1_new = np.dot(Gamma1, Data) / np.sum(Gamma1)
mu2_new = np.dot(Gamma2, Data) / np.sum(Gamma2)
# 计算新的参数sigma
# sigma1_new = np.sqrt(np.dot(Gamma1, np.square(Data - mu1_old)) / np.sum(Gamma1))
sigma1_new = np.sqrt(np.dot(Gamma1, np.square(Data - mu1_new)) / np.sum(Gamma1))
# sigma2_new = np.sqrt(np.dot(Gamma2, np.square(Data - mu2_old)) / np.sum(Gamma2))
sigma2_new = np.sqrt(np.dot(Gamma2, np.square(Data - mu2_new)) / np.sum(Gamma2))
# 计算新的参数alpha
m = len(Data)
alpha1_new = np.sum(Gamma1) / m
alpha2_new = np.sum(Gamma2) / m
return mu1_new, sigma1_new, alpha1_new, mu2_new, sigma2_new, alpha2_new
def EM(Data, mu1, sigma1, alpha1, mu2, sigma2, alpha2, itertime):
"""
EM算法
:param Data:
:param mu1:
:param sigma1:
:param alpha1:
:param mu2:
:param sigma2:
:param alpha2:
:param itertime: 迭代次数
:return: 模型中分模型的参数
"""
# 迭代
for i in range(itertime):
print("************************************************")
print(f"\n\n第{i}次迭代")
# 计算响应度,E步
Gamma1, Gamma2 = E_step(Data, mu1, sigma1, alpha1, mu2, sigma2, alpha2)
print(f"对1类的隶属度 = {Gamma1}, \n对2类的隶属度 = {Gamma2}")
# 更新参数,M步
mu1, sigma1, alpha1, mu2, sigma2, alpha2 \
= M_step(Data, mu1, mu2, Gamma1, Gamma2)
print(f"mu1={mu1}, sigma1={sigma1}, alpha1={alpha1},\n"
f"mu2={mu2}, sigma2={sigma2}, alpha2={alpha2}")
return mu1, sigma1, alpha1, mu2, sigma2, alpha2
if __name__ == '__main__':
# 生成数据
Data = np.array([0,
0.5,
1,
2,
3,
4])
# 初始化数据
init_mu1 = 0.25
init_sigma1 = 0.25
init_theta1, init_alpha1 = [init_mu1, init_sigma1], 1/3
init_mu2 = 2.5
init_sigma2 = np.sqrt(1.25)
init_theta2, init_alpha2 = [init_mu2, init_sigma2], 2/3
itertime = 20
tol = 2e-3
# 训练模型
start = time.time()
print("start training")
model_mu1, model_sigma1, model_alpha1, model_mu2, model_sigma2, model_alpha2 = \
EM(Data, init_mu1, init_sigma1, init_alpha1, init_mu2, init_sigma2, init_alpha2, itertime)
print('end training')
end = time.time()
print('training time: ', end - start)
# print('真实参数:mu1 ', mu1, 'sigma1 ', sigma1, 'alpha1 ', alpha1, 'mu2 ', mu2, 'sigma2 ', sigma2, 'alpha2 ', alpha2)
print('模型参数:mu1 ', model_mu1, 'sigma1 ', model_sigma1, 'alpha1 ', model_alpha1, 'mu2 ', model_mu2, 'sigma2 ',
model_sigma2, 'alpha2 ', model_alpha2)
参考:
[1]《Dempster A P . Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society, 1977, 39.》
[2]《高斯混合模型(GMM)》
[3]《EM算法python复现 - 高斯混合模型》