比赛链接:Dashboard - Codeforces Round 855 (Div. 3) - Codeforces
A:模拟
题意:给定一个字符串,问这个字符串是不是猫叫。定义是猫叫得字符串:
1:必须由大写或小写得'M(m)','E(e)','O(o)','W(w)'组成
2:字符串起始必须是M(大写或者小写都行)紧跟其后必须是E,接着是O,接着是W,然后结束。
分析:根据条件,将字符串扫一遍即可
代码:
#include <bits/stdc++.h>
#define pi acos(-1)
#define int long long
#define PII pair<int,int>
#define all(v) v.begin(),v.end()
#define INF 0x3f3f3f3f3f3f3f3f
#define fs(a) cout<<fixed<<setprecision(a)<< //fs(4)(1.0/3)=0.3333//保留a位小数
#define read() freopen("input.txt","r",stdin)
#define output() freopen("output.txt","w",stdout)
#define fast ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
using namespace std;
const int N=2e5+10;
const int mod = 1e9+7;
const int Mod = 998244353;
int lowbit(int x){return x&(-x);}
int up(int a,int b){return a<0?a/b:(a+b-1)/b;}// a/b向上取整
int quickpow(int a,int n){int ans=1;while(n){if(n&1){ans*=a,ans%=Mod;}a*=a;a%=Mod;n>>=1;}return ans;}//快速幂
int qc(int a,int b,int p){int ans=0;while(b){if(b&1){ans+=a,ans%=p;}a*=2;a%=p;b>>=1;}return ans;}//快速乘 a*b%p
inline void solve(){
int n,i=0;string s;
cin>>n>>s;
if(n<4||(s[0]!='M'&&s[0]!='m')){
cout<<"NO\n";return;
}
while(s[i]=='M'||s[i]=='m') i++;
if(s[i]!='E'&&s[i]!='e'){
cout<<"NO\n";return;
}
while(s[i]=='E'||s[i]=='e') i++;
if(s[i]!='O'&&s[i]!='o'){
cout<<"NO\n";return;
}
while(s[i]=='O'||s[i]=='o') i++;
if(s[i]!='W'&&s[i]!='w'){
cout<<"NO\n";return;
}
while(s[i]=='W'||s[i]=='w') i++;
if(i==n) cout<<"YES\n";
else cout<<"NO\n";
}
signed main(){
fast;int T;cin>>T;
while(T--) solve();
}
B:贪心
题意: 给定一个字符串,相同字符的大小写为一个匹配对(例如:Aa)。你可以使用任意次操作,使得将大写字母改为小写字母,或者小写字母改为大写字母。问最多有多少个匹配对
分析:我们发现,尽可能的使用完操作次数,我们才会得到最大匹配对数。我们只需要记录一下相同字母对应的大小写个数,然后可以先计算原始的匹配对,再计算操作后的匹配对数。具体看代码
#include <bits/stdc++.h>
#define pi acos(-1)
#define int long long
#define PII pair<int,int>
#define all(v) v.begin(),v.end()
#define INF 0x3f3f3f3f3f3f3f3f
#define fs(a) cout<<fixed<<setprecision(a)<< //fs(4)(1.0/3)=0.3333//保留a位小数
#define read() freopen("input.txt","r",stdin)
#define output() freopen("output.txt","w",stdout)
#define fast ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
using namespace std;
const int N=2e5+10;
const int mod = 1e9+7;
const int Mod = 998244353;
int lowbit(int x){return x&(-x);}
int up(int a,int b){return a<0?a/b:(a+b-1)/b;}// a/b向上取整
int quickpow(int a,int n){int ans=1;while(n){if(n&1){ans*=a,ans%=Mod;}a*=a;a%=Mod;n>>=1;}return ans;}//快速幂
int qc(int a,int b,int p){int ans=0;while(b){if(b&1){ans+=a,ans%=p;}a*=2;a%=p;b>>=1;}return ans;}//快速乘 a*b%p
int u[N],l[N];
inline void solve(){
int n,k;string s;cin>>n>>k>>s;
memset(u,0,sizeof u);memset(l,0,sizeof l);
for(int i=0;i<n;i++){
if(isupper(s[i])) u[s[i]-'A']++;
else l[s[i]-'a']++;
}
int ans=0;
for(int i=0;i<26;i++){
int minn=min(u[i],l[i]);
ans+=minn;
u[i]-=minn;l[i]-=minn;
if(u[i]>=2){
if(u[i]/2<=k) ans+=u[i]/2,k-=u[i]/2;
else ans+=k,k=0;
}
else if(l[i]>=2){
if(l[i]/2<=k) ans+=l[i]/2,k-=l[i]/2;
else ans+=k,k=0;
}
}
cout<<ans<<"\n";
}
signed main(){
fast;int T;cin>>T;
while(T--) solve();
}
C:模拟+贪心(大根堆)
题意:你的初始分数为0。给定一堆牌,每个牌有一定的数字,给定顺序去摸取。如果摸到非0牌,则可以选择将此牌放在自己牌堆的堆顶,或者放弃这张牌。如果摸到数字为0的牌,则自己牌堆堆顶的数字会加到你的分数里面,并且标记这张牌已经使用过,问你能得到的最大分数。
分析:根据题意,我们发现,在摸到非0牌之前,我们要将最大的数字放在堆顶,那么这是一个动态维护最大值的过程,因此我们可以使用大根堆。大根堆的pop()操作即为已经使用的牌。
代码:
#include <bits/stdc++.h>
#define pi acos(-1)
#define int long long
#define PII pair<int,int>
#define all(v) v.begin(),v.end()
#define INF 0x3f3f3f3f3f3f3f3f
#define fs(a) cout<<fixed<<setprecision(a)<< //fs(4)(1.0/3)=0.3333//保留a位小数
#define read() freopen("input.txt","r",stdin)
#define output() freopen("output.txt","w",stdout)
#define fast ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
using namespace std;
const int N=2e5+10;
const int mod = 1e9+7;
const int Mod = 998244353;
int lowbit(int x){return x&(-x);}
int up(int a,int b){return a<0?a/b:(a+b-1)/b;}// a/b向上取整
int quickpow(int a,int n){int ans=1;while(n){if(n&1){ans*=a,ans%=Mod;}a*=a;a%=Mod;n>>=1;}return ans;}//快速幂
int qc(int a,int b,int p){int ans=0;while(b){if(b&1){ans+=a,ans%=p;}a*=2;a%=p;b>>=1;}return ans;}//快速乘 a*b%p
int a[N];
inline void solve(){
int n;cin>>n;
priority_queue<int>q;
for(int i=1;i<=n;i++) cin>>a[i];
int ans=0,cnt=1;
while(1){
if(cnt>n) break;
while(cnt<=n&&a[cnt]!=0) q.push(a[cnt++]);
while(cnt<=n&&a[cnt]==0){
if(!q.size()){
cnt++;continue;
}
else{
ans+=q.top();
q.pop();
cnt++;
}
}
}
cout<<ans<<"\n";
}
signed main(){
fast;int T;cin>>T;
while(T--) solve();
}
D:思维
题意:给定字符串 s,你可以移除其中两个连续的字母。问操作之后你所能得到的不同字符串的数量是多少
分析:我们发现,如果这样一组字符串:aba,那么删掉两个相邻的元素,所得的结果串是一样的。那么我们可以得出一个结论:如果,那么就说明有一个重复串的出现。
此外还有一个结论可以从样例得出:如果一个长度为n的串所含的不同字符个数为n,那么可以得到n-1个不同的串。因此,我们只需要减掉重复串的个数即可。
代码:
#include <bits/stdc++.h>
#define pi acos(-1)
#define int long long
#define PII pair<int,int>
#define all(v) v.begin(),v.end()
#define INF 0x3f3f3f3f3f3f3f3f
#define fs(a) cout<<fixed<<setprecision(a)<< //fs(4)(1.0/3)=0.3333//保留a位小数
#define read() freopen("input.txt","r",stdin)
#define output() freopen("output.txt","w",stdout)
#define fast ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
using namespace std;
const int N=2e5+10;
const int mod = 1e9+7;
const int Mod = 998244353;
int lowbit(int x){return x&(-x);}
int up(int a,int b){return a<0?a/b:(a+b-1)/b;}// a/b向上取整
int quickpow(int a,int n){int ans=1;while(n){if(n&1){ans*=a,ans%=Mod;}a*=a;a%=Mod;n>>=1;}return ans;}//快速幂
int qc(int a,int b,int p){int ans=0;while(b){if(b&1){ans+=a,ans%=p;}a*=2;a%=p;b>>=1;}return ans;}//快速乘 a*b%p
int a[N];
inline void solve(){
int n;string s;cin>>n>>s;
int ans=0;
for(int i=0;i<n-2;i++){
if(s[i]==s[i+2]) ans++;
}
cout<<n-ans-1<<"\n";
}
signed main(){
fast;int T;cin>>T;
while(T--) solve();
}
E:思维
题意:给定两个字符串和k,字符串可以将下标 和|i−j|=k和|i−j|=k+1 得两个字符 ,ai,aj 发生交换
分析:通过手撸样例可以发现:如果当n=5,k=3的时候,满足条件的点为:[1,4],[1,5],[2,5]。然后你会发现:点1,2,4,5的位置可以任意交换。位置3则不能交换。所以思路很显然了。
首先判断两个字符串中包含的字符数是否相同,再判断不能交换位置的点上的字符是否相同。
代码:
#include <bits/stdc++.h>
#define pi acos(-1)
#define int long long
#define PII pair<int,int>
#define all(v) v.begin(),v.end()
#define INF 0x3f3f3f3f3f3f3f3f
#define fs(a) cout<<fixed<<setprecision(a)<< //fs(4)(1.0/3)=0.3333//保留a位小数
#define read() freopen("input.txt","r",stdin)
#define output() freopen("output.txt","w",stdout)
#define fast ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
using namespace std;
const int N=2e5+10;
const int mod = 1e9+7;
const int Mod = 998244353;
int lowbit(int x){return x&(-x);}
int up(int a,int b){return a<0?a/b:(a+b-1)/b;}// a/b向上取整
int quickpow(int a,int n){int ans=1;while(n){if(n&1){ans*=a,ans%=Mod;}a*=a;a%=Mod;n>>=1;}return ans;}//快速幂
int qc(int a,int b,int p){int ans=0;while(b){if(b&1){ans+=a,ans%=p;}a*=2;a%=p;b>>=1;}return ans;}//快速乘 a*b%p
inline bool pd(string a,string b){
map<char,int>mp1,mp2;
for(int i=0;i<a.size();i++) mp1[a[i]]++;
for(int i=0;i<b.size();i++) mp2[b[i]]++;
for(auto x:a){
if(mp1[x]!=mp2[x]) return false;
}
return true;
}
inline void solve(){
int n,k;string s,t;
cin>>n>>k>>s>>t;
if(!pd(s,t)){
cout<<"NO\n";return;
}
bool ok=true;
for(int i=0;i<n;i++){
if(i<k&&n-i-1<k&&s[i]!=t[i]){
ok=false;break;
}
}
if(ok) cout<<"YES\n";
else cout<<"NO\n";
}
signed main(){
fast;int T;cin>>T;
while(T--) solve();
}