并发编程——ReentrantLock

news2024/11/17 17:55:20

如果有兴趣了解更多相关内容,欢迎来我的个人网站看看:耶瞳空间

一:基本介绍

从Java 5开始,引入了一个高级的处理并发的java.util.concurrent包,它提供了大量更高级的并发功能,能大大简化多线程程序的编写。我们知道Java语言直接提供了synchronized关键字用于加锁,但这种锁一是很重,二是获取时必须一直等待,没有额外的尝试机制。而java.util.concurrent.locks包提供的ReentrantLock用于替代synchronized加锁。

Lock是Java并发编程中很重要的一个接口,它要比synchronized关键字更能直译"锁"的概念,Lock需要手动加锁和手动解锁,一般通过lock.lock()方法来进行加锁,通过lock.unlock()方法进行解锁。一般会在finally块中写unlock( )以防死锁。而ReentrantLock实现了Lock接口。

ReentrantLock是一个可重入的互斥锁,又被称为“独占锁”。可重入表示ReentrantLock锁可以被同一个线程多次获取而不会出现死锁。ReentraantLock是通过一个FIFO的等待队列来管理获取该锁所有线程的。在“公平锁”的机制下,线程依次排队获取锁;而“非公平锁”在锁是可获取状态时,不管自己是不是在队列的开头都会获取锁。

ReentrantLock和synchronized比较

  • synchronized是Java语言层面提供的语法,而ReentrantLock是Java代码实现的锁。
  • synchronized是独占锁,加锁和解锁的过程自动进行,易于操作,但不够灵活。ReentrantLock也是独占锁,加锁和解锁的过程需要手动进行,不易操作,但非常灵活。
  • synchronized不可响应中断,一个线程获取不到锁就一直等着;ReentrantLock可以响应中断。

基本使用示例:

public class Counter {
    private final Lock lock = new ReentrantLock();
    private int count;

    public void add(int n) {
        lock.lock();
        try {
            count += n;
        } finally {
            lock.unlock();
        }
    }
}

二:可重入

可重入是指同一个线程如果首次获得了这把锁,那么因为它是这把锁的拥有者,因此有权利再次获取这把锁。如果是不可重入锁,那么第二次获得锁时,自己也会被锁挡住

示例代码如下:

public class Demo {
  static Lock lock = new ReentrantLock();

  public static void main(String[] args) {
    method1();
  }

  public static void method1() {
    lock.lock();
    try {
      System.out.println("execute method1");
      method2();
    } finally {
      lock.unlock();
    }
  }

  public static void method2() {
    lock.lock();
    try {
      System.out.println("execute method2");
    } finally {
      lock.unlock();
    }
  }
}

在这里插入图片描述

三:可打断

public class Demo {
  static Lock lock = new ReentrantLock();

  public static void main(String[] args) {
    Thread t1 = new Thread(() -> {
      try {
        // 如果没有竞争,那么此方法就会获取lock对象锁
        // 如果有竞争,就会进入阻塞队列,可以被其他线程用interrupt方法打断
        System.out.println("尝试获得锁");
        lock.lockInterruptibly();
      } catch (InterruptedException e) {
        e.printStackTrace();
        // 没有获得锁,在等待时被打断了
        return;
      }
      try {
        System.out.println("获取到锁了");
      } finally {
        lock.unlock();
      }
    }, "t1");

    lock.lock();
    t1.start();

    try {
      Thread.sleep(1);
      System.out.println("打断t1");
      t1.interrupt();
    } catch (InterruptedException e) {
      e.printStackTrace();
    }
  }
}

在这里插入图片描述

四:锁超时

当tryLock方法里没有传入参数时,默认立刻尝试获得锁:

public class Demo {
  static Lock lock = new ReentrantLock();

  public static void main(String[] args) {
    Thread t1 = new Thread(() -> {
      System.out.println("t1线程启动。。。。。。");
      if (!lock.tryLock()) {
        System.out.println("t1线程获取锁失败,返回");
        return;
      }
      try {
        System.out.println("t1线程获得了锁");
      } finally {
        lock.unlock();
      }
    }, "t1");

    lock.lock();
    System.out.println("主线程获得了锁");
    t1.start();
    try {
      Thread.sleep(1);
    } catch (InterruptedException e) {
      e.printStackTrace();
    } finally {
      System.out.println("主线程释放锁");
      lock.unlock();
    }
  }
}

在这里插入图片描述

但tryLock还有重载方法tryLock(long time, TimeUnit unit),该方法会等待时间内一直尝试获得锁:

public class Demo {
  static Lock lock = new ReentrantLock();

  public static void main(String[] args) {
    Thread t1 = new Thread(() -> {
      System.out.println("t1线程启动。。。。。。");
      try {
        if (!lock.tryLock(2, TimeUnit.SECONDS)) {
          System.out.println("t1线程获取锁失败,返回");
          return;
        }
      } catch (InterruptedException e) {
        System.out.println("等待被打断");
        e.printStackTrace();
        return;
      }
      try {
        System.out.println("t1线程获得了锁");
      } finally {
        lock.unlock();
      }
    }, "t1");

    lock.lock();
    System.out.println("主线程获得了锁");
    t1.start();
    try {
      Thread.sleep(1);
    } catch (InterruptedException e) {
      e.printStackTrace();
    } finally {
      System.out.println("主线程释放锁");
      lock.unlock();
    }
  }
}

在这里插入图片描述

五:公平锁

公平锁与非公平锁:

  • 公平锁的实现就是谁等待时间最长,谁就先获取锁
  • 非公平锁就是随机获取的过程,谁运气好,cpu时间片轮询到哪个线程,哪个线程就能获取锁

ReentrantLock默认是不公平,但可以根据需要自行设置是否公平。ReentrantLock构造方法源码如下:

    /**
     * 创建一个ReentrantLock实例
     * 该方法等同于调用ReentrantLock(false)
     */
    public ReentrantLock() {
        sync = new NonfairSync();
    }

    /**
     * 根据传入的公平策略创建ReentrantLock实例
     * @param fair true为公平策略,false为非公平策略
     */
    public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }

ReentrantLock公平锁相对于非公平锁来说,多线程并发情况下的系统吞吐量偏低,因为需要排队等待。所以ReentrantLock公平锁适应于多线程并发不是很高、倾向于先来先到的应用场景。

六:条件变量

ReentrantLock中的条件变量功能,类似于普通synchronized的wait、notify,我们可以使用ReentranLlock锁,配合Condition对象上的await()和signal()或signalAll()方法,来实现线程间协作。与synchronized的wait和notify不同之处在于,ReentrantLock中的条件变量可以有多个,可以实现更精细的控制线程。

在介绍方法的使用之前,先来了解一下Condition是什么。可以把Condition看作是Object监视器的替代品。众所周知,Object有wait()和notify()方法,用于线程间的通信。并且这两个方法只能在synchronized同步块内才可以调用,所有线程的等待和唤醒都需要关联到监视器对象的WaitSet集合。Condition同样可以实现上面的线程通信。不同点在于,synchronized锁对象关联的监视器对象仅有一个,所以等待队列也只有一个。而一个ReentrantLock可以有多个Condition,这样可以根据不同的业务需求,在使用同一个lock锁对象的基础上使用多个等待队列,让不同性质的线程加入到不同的等待队列当中。

AQS当中Condition的实现类是ConditionObject,它是AQS的内部类,所以无法直接实例化。可以配合ReentrantLock来使用。ReentrantLock中有newCondition()的方法,来实例化一个ConditionObject对象,因此可以调用多次newCondition()方法来得到多个等待队列。

使用流程:

  • await前需要获得锁
  • await 执行后,会释放锁,进入conditionObject等待
  • await的线程被唤醒(或打断、或超时)取重新竞争lock锁竞争lock锁成功后,从await后继续执行

示例代码如下:

@Slf4j
public class Demo {

  private static ReentrantLock lock = new ReentrantLock();
  // 等烟休息室
  static Condition cigaretteRoom = lock.newCondition();
  // 等外卖休息室
  static Condition eattingRoom = lock.newCondition();

  static boolean hasCigarette = false;
  static boolean hasTakeout = false;


  public static void main(String[] args) throws InterruptedException {
    // 小南
    new Thread(() -> {
      lock.lock();
      try {
        log.debug("[{}]", hasCigarette);
        while (!hasCigarette) {
          log.debug("没烟,先歇会!");
          try {
            cigaretteRoom.await();
          } catch (InterruptedException e) {
            e.printStackTrace();
          }
        }
        log.debug("有烟没?[{}]", hasCigarette);
        if (hasCigarette) {
          log.debug("可以开始干活了");
        }
      } finally {
        lock.unlock();
      }
    }, "小南").start();

    // 小女等外卖
    new Thread(() -> {
      lock.lock();
      try {
        log.debug("外卖送到没?[{}]", hasTakeout);
        while (!hasTakeout) {
          log.debug("没外卖,先歇会!");
          try {
            eattingRoom.await();
          } catch (InterruptedException e) {
            e.printStackTrace();
          }
        }
        log.debug("外卖送到没?[{}]", hasTakeout);
        if (hasTakeout) {
          log.debug("可以开始干活了");
        } else {
          log.debug("没干成活...");
        }
      } finally {
        lock.unlock();
      }
    }, "小女").start();

    // 送烟的来了
    Thread.sleep(1000);
    new Thread(() -> {
      lock.lock();
      try {
        hasCigarette = true;
        cigaretteRoom.signal();
      } finally {
        lock.unlock();
      }
    }, "送烟的").start();

    // 送外卖的来了
    Thread.sleep(1000);
    new Thread(() -> {
      lock.lock();
      try {
        hasTakeout = true;
        eattingRoom.signal();
      } finally {
        lock.unlock();
      }
    }, "送外卖的").start();
  }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/390265.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

shell基础(5)算数计算:运算语法、自增自减

文章目录1. shell算数运算的特点2. 运算符一览3. 运算语法3.1 整形运算3.2. 小数运算 ing4. 自增自减4.1. a与a4.2. 自加1. shell算数运算的特点 Shell 和其它编程语言不同,Shell 不能直接进行算数运算,必须使用数学计算命令。Shell只支持整数运算&#…

C++017-C++冒泡排序与插入排序

文章目录C017-C冒泡排序与插入排序冒泡排序与插入排序目标冒泡排序排序规则冒泡排序优化插入排序题目描述在线练习:总结C017-C冒泡排序与插入排序 在线练习: http://noi.openjudge.cn/ https://www.luogu.com.cn/ 冒泡排序与插入排序 参考:…

详解基于 Celestia、Eclipse 构建的首个Layer3 链 Nautilus Chain

以流支付为主要概念的Zebec生态,正在推动流支付这种新兴的支付方式向更远的方向发展,该生态最初以Zebec Protocol的形态发展,并从初期的Solana进一步拓展至BNB Chian以及Near上。与此同时,Zebec生态也在积极的寻求从协议形态向公链…

【PyTorch】教程:torch.nn.Hardsigmoid

torch.nn.Hardsigmoid 原型 CLASS torch.nn.Hardsigmoid(inplaceFalse) 参数 inplace (bool) – 默认为 False 定义 Hardsigmoid(x){0if x≤−3,1if x≥3,x/61/2otherwise\text{Hardsigmoid}(x) \begin{cases} 0 & \text{if~} x \le -3, \\ 1 & \text{if~} x \ge 3…

PHP<=7.4.21 Development Server源码泄露漏洞

PHP<7.4.21 Development Server源码泄露漏洞php启动内置web服务器漏洞利用原理因为特殊的原因CTF荒废了一段时间&#xff0c;近期总算再次捡了起来&#xff0c;算是从头开始了吧。近期比赛刚好遇到了这个漏洞&#xff0c;看国内似乎还没有过多的论述&#xff0c;先总结一波。…

【自然语言处理】【大模型】大语言模型BLOOM推理工具测试

相关博客 【自然语言处理】【大模型】大语言模型BLOOM推理工具测试 【自然语言处理】【大模型】GLM-130B&#xff1a;一个开源双语预训练语言模型 【自然语言处理】【大模型】用于大型Transformer的8-bit矩阵乘法介绍 【自然语言处理】【大模型】BLOOM&#xff1a;一个176B参数…

RocksDB 架构

文章目录1、RocksDB 摘要1.1、RocksDB 特点1.2、基本接口1.3、编译2、LSM - Tree2.1、Memtable2.2、WAL2.3、SST2.4、BlockCache3、读写流程3.1、读取流程3.2、写入流程4、LSM-Tree 放大问题4.1、放大问题4.2、compactionRocksDB 是 Facebook 针对高性能磁盘开发开源的嵌入式持…

如何防止用户打开浏览器开发者工具?

大家好&#xff0c;我是前端西瓜哥。作为一名前端开发&#xff0c;在浏览一些网页时&#xff0c;有时会在意一些交互效果的实现&#xff0c;会打开开发者工具查看源码实现。 但有些网站做了防窥探处理&#xff0c;打开开发者工具后&#xff0c;会无法再正常进行网页的操作。 …

Jeston与Px4(四)

ROS控制PX4 上一节里我们已经将mavros和仿真gazebo搭建完毕&#xff0c;这一节将通过ros来实现对接PX4固件的目标 文章目录ROS控制PX41、搭建PX4开发固件环境1、搭建PX4开发固件环境 “永远不要使用sudo来修复权限问题&#xff0c;否则会带来更多的权限问题&#xff0c;需要重…

PMP项目管理引论介绍

目录1. 指南概述和目的1.1 项目管理标准1.2 道德与专业行为规范2 基本要素2.1 项目2.2 项目管理的重要性2.3 项目、项目集、项目组合以及运营管理之间的关系2.3.1 概述2.3.2. 项目组合与项目集管理2.3.3. 运营管理2.3.4. 组织级项目管理和战略2.3.5. 项目管理2.3.6. 运营管理与…

下载BSP并编译内核

前提&#xff1a;用到的开发板100ask_imx6ull 下载BSP 100ask_imx6ull 开发板的 BSP 都保存在 Git 站点上&#xff0c;通过 repo 命令进行统一管理。配置 repo git config --global user.email "user100ask.com" book100ask:~$ git config --global user.name &qu…

spring源码篇(3)——bean的加载和创建

spring-framework 版本&#xff1a;v5.3.19 文章目录bean的加载bean的创建总结getBean流程createBean流程doCreateBean流程bean的加载 beanFactory的genBean最常用的一个实现就是AbstractBeanFactory.getBean()。 以ApplicationContext为例&#xff0c;流程是: ApplicationCon…

01 C语言计算

C语言计算 1、变量 用途&#xff1a;需要存放输入的数据 定义格式&#xff1a;数据类型 变量名&#xff08;用于区分其他变量&#xff09; 变量名格式&#xff1a;只能由字母/下划线/数字构成&#xff0c;首位不能是数字&#xff1b;且变量名不能是标识符 **变量赋值和初始…

Python每日一练(20230305)

目录 1. 正则表达式匹配 ★★★ 2. 寻找旋转排序数组中的最小值 II ★★★ 3. 删除排序链表中的重复元素 II ★★ 1. 正则表达式匹配 给你一个字符串 s 和一个字符规律 p&#xff0c;请你来实现一个支持 . 和 * 的正则表达式匹配。 . 匹配任意单个字符* 匹配零个或多个…

格式化字符串之在栈上修改got表,执行system(“/bin/sh“)

题目自取&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1sZyC-d47cnrjQ0rmRNLbSg?pwdiung 提取码&#xff1a;iung 这是一题改got表的格式化字符串的例题 这里介绍下pwntools里的一个脚本 fmtstr_payload&#xff1a; 举个例子&#xff0c; payload fmtstr_payl…

谷歌浏览器被hao123网页(或其他网页)劫持了,怎么办?(已解决)

文章目录1、前言2、解决方案2.1、方案一&#xff1a;删除目标内容2.2、方案二&#xff1a;修改浏览器启动时内容2.3、方案三&#xff1a;重命名2.4、方案四&#xff1a;修改WMI脚本2.5、方案五&#xff1a;火绒修复3、总结1、前言 今天打开chrome浏览器&#xff0c;莫名转到hao…

【CMU15-445数据库】bustub Project #2:B+ Tree(下)

Project 2 最后一篇&#xff0c;讲解 B 树并发控制的实现。说实话一开始博主以为这块内容不会很难&#xff08;毕竟有 Project 1 一把大锁摆烂秒过的历史x&#xff09;&#xff0c;但实现起来才发现不用一把大锁真的极其痛苦&#xff0c;折腾了一周多才弄完。 本文分基础版算法…

【uni-app教程】八、UniAPP Vuex 状态管理

八、UniAPP Vuex 状态管理 概念 Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式。它采用集中式存储管理应用的所有组件的状态&#xff0c;并以相应的规则保证状态以一种可预测的方式发生变化。 应用场景 Vue多个组件之间需要共享数据或状态。 关键规则 State&#xff1a…

Linux系统配置nginx

下载安装包wget -c http://nginx.org/download/nginx-1.19.1.tar.gz安装gcc安装包yum install gcc-c安装pre-devel依赖库yum -y install pcre-devel安装openssl依赖库yum -y install openssl openssl-devel解压tar -zxvf 目录名 nginx-1.23.1.tar.gz -C 另外一个目录&#xff0…

QT配置安卓环境(保姆级教程)

目录 下载环境资源 JDK1.8 NDK SDK ​安装QT 配置环境 下载环境资源 JDK1.8 介绍JDK是Java开发的核心工具&#xff0c;为Java开发者提供了一套完整的开发环境&#xff0c;包括开发工具、类库和API等&#xff0c;使得开发者可以高效地编写、测试和运行Java应用程序。 下载…