最近几篇较好论文实现代码(附源代码下载)

news2024/11/17 13:26:48
  • 《Towards Layer-wise Image Vectorization》(CVPR 2022)

GitHub: github.com/ma-xu/LIVE

Installation

We suggest users to use the conda for creating new python environment.

Requirement: 5.0<GCC<6.0; nvcc >10.0.

git clone git@github.com:ma-xu/LIVE.gitcd LIVE
conda create -n live python=3.7
conda activate live
conda install -y pytorch torchvision -c pytorch
conda install -y numpy scikit-image
conda install -y -c anaconda cmake
conda install -y -c conda-forge ffmpeg
pip install svgwrite svgpathtools cssutils numba torch-tools scikit-fmm easydict visdom
pip install opencv-python==4.5.4.60  # please install this version to avoid segmentation fault.cd DiffVG
git submodule update --init --recursive
python setup.py installcd ..

Run Experiments

conda activate live
cd LIVE
# Please modify the paramters accordingly.
python main.py --config <config.yaml> --experiment <experiment-setting> --signature <given-folder-name> --target <input-image> --log_dir <log-dir>
# Here is an simple example:
python main.py --config config/base.yaml --experiment experiment_5x1 --signature smile --target figures/smile.png --log_dir log/

  • 《Multimodal Token Fusion for Vision Transformers》(CVPR 2022)

GitHub: github.com/yikaiw/TokenFusion

  • 《PointAugmenting: Cross-Modal Augmentation for 3D Object Detection》(CVPR 2022)

GitHub: github.com/VISION-SJTU/PointAugmenting

  • 《Fantastic questions and where to find them: FairytaleQA -- An authentic dataset for narrative comprehension.》(ACL 2022)

GitHub: github.com/uci-soe/FairytaleQAData

  • 《LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks》(AAAI 2022)

GitHub: github.com/agoodge/LUNAR

Firstly, extract data.zip

To replicate the results on the HRSS dataset with neighbour count k = 100 and "Mixed" negative sampling scheme

  • Extract saved_models.zip

  • Run:

python3 main.py--datasetHRSS--samplesMIXED--k 100

To train a new model:

python3 main.py--datasetHRSS--samplesMIXED--k 100 --train_new_model
  • 《Pseudo-Label Transfer from Frame-Level to Note-Level in a Teacher-Student Framework for Singing Transcription from Polyphonic Music》(ICASSP 2022)

GitHub: github.com/keums/icassp2022-vocal-transcription

  • 《Robust Disentangled Variational Speech Representation Learning for Zero-shot Voice Conversion》(ICASSP 2022)

GitHub: github.com/jlian2/Robust-Voice-Style-Transfer

Demo:https://jlian2.github.io/Robust-Voice-Style-Transfer/

  • 《HandoverSim: A Simulation Framework and Benchmark for Human-to-Robot Object Handovers》(ICRA 2022)

GitHub: github.com/NVlabs/handover-sim

2022-06-03 16:13:46: Running evaluation for results/2022-02-28_08-57-34_yang-icra2021_s0_test
2022-06-03 16:13:47: Evaluation results:
|  success rate   |    mean accum time (s)    |                    failure (%)                     |
|      (%)        |  exec  |  plan  |  total  |  hand contact   |   object drop   |    timeout     |
|:---------------:|:------:|:------:|:-------:|:---------------:|:---------------:|:--------------:|
| 64.58 ( 93/144) | 4.864  | 0.036  |  4.900  | 17.36 ( 25/144) | 11.81 ( 17/144) | 6.25 (  9/144) |
2022-06-03 16:13:47: Printing scene ids
2022-06-03 16:13:47: Success (93 scenes):
---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---
  0    1    2    3    4    5    6    7    8    9   10   12   13   15   16   17   18   19   21   22
 23   25   26   27   28   30   33   34   35   36   37   38   42   43   46   49   50   53   54   56
 59   60   62   63   64   66   68   69   70   71   72   77   81   83   85   87   89   91   92   93
 94   95   96   98  103  106  107  108  109  110  111  112  113  114  115  116  117  120  121  123
125  126  127  128  130  131  132  133  137  138  139  141  143
---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---
2022-06-03 16:13:47: Failure - hand contact (25 scenes):
---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---
 11   14   20   29   39   40   41   44   45   47   51   55   57   58   65   67   74   80   82   88
102  105  118  124  136
---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---
2022-06-03 16:13:47: Failure - object drop (17 scenes):
---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---
 24   31   32   52   61   78   79   84   86   97  101  104  119  122  134  140  142
---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---
2022-06-03 16:13:47: Failure - timeout (9 scenes):
---  ---  ---  ---  ---  ---  ---  ---  ---
 48   73   75   76   90   99  100  129  135
---  ---  ---  ---  ---  ---  ---  ---  ---
2022-06-03 16:13:47: Evaluation complete.

  • 《CDLM: Cross-Document Language Modeling》(EMNLP 2021)

GitHub: github.com/aviclu/CDLM

You can either pretrain by yourself or use the pretrained CDLM model weights and tokenizer files, which are available on HuggingFace.

Then, use:

from transformers import AutoTokenizer, AutoModel
# load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('biu-nlp/cdlm')
model = AutoModel.from_pretrained('biu-nlp/cdlm')

  • 《Continual Learning for Task-Oriented Dialogue Systems》(EMNLP 2021)

GitHub: github.com/andreamad8/ToDCL

  • 《Torsional Diffusion for Molecular Conformer Generation》(2022)

GitHub: github.com/gcorso/torsional-diffusion

  • 《MMChat: Multi-Modal Chat Dataset on Social Media》(2022)

GitHub: github.com/silverriver/MMChat

  • 《Can CNNs Be More Robust Than Transformers?》(2022)

GitHub: github.com/UCSC-VLAA/RobustCNN

  • 《Revealing Single Frame Bias for Video-and-Language Learning》(2022)

GitHub: github.com/jayleicn/singularity

  • 《Progressive Distillation for Fast Sampling of Diffusion Models》(2022)

GitHub: github.com/Hramchenko/diffusion_distiller

  • 《Neural Basis Models for Interpretability》(2022)

GitHub: github.com/facebookresearch/nbm-spam

  • 《Scalable Interpretability via Polynomials》(2022)

GitHub: github.com/facebookresearch/nbm-spam

  • 《Infinite Recommendation Networks: A Data-Centric Approach》(2022)

GitHub: github.com/noveens/infinite_ae_cf

  • 《The GatedTabTransformer. An enhanced deep learning architecture for tabular modeling》(2022)

GitHub: github.com/radi-cho/GatedTabTransformer

Usage:

import torch
import torch.nn as nn
from gated_tab_transformer import GatedTabTransformer
 
 
model = GatedTabTransformer(
    categories = (10, 5, 6, 5, 8),      # tuple containing the number of unique values within each category
    num_continuous = 10,                # number of continuous values
    transformer_dim = 32,               # dimension, paper set at 32
    dim_out = 1,                        # binary prediction, but could be anything
    transformer_depth = 6,              # depth, paper recommended 6
    transformer_heads = 8,              # heads, paper recommends 8
    attn_dropout = 0.1,                 # post-attention dropout
    ff_dropout = 0.1,                   # feed forward dropout
    mlp_act = nn.LeakyReLU(0),          # activation for final mlp, defaults to relu, but could be anything else (selu, etc.)
    mlp_depth=4,                        # mlp hidden layers depth
    mlp_dimension=32,                   # dimension of mlp layers
    gmlp_enabled=True                   # gmlp or standard mlp
)
 
 
x_categ = torch.randint(0, 5, (1, 5))   # category values, from 0 - max number of categories, in the order as passed into the constructor above
x_cont = torch.randn(1, 10)             # assume continuous values are already normalized individually
 
 
pred = model(x_categ, x_cont)
print(pred)

  • 《Distract Your Attention: Multi-head Cross Attention Network for Facial Expression Recognition》(2022)

GitHub: github.com/yaoing/DAN

  • 《Towards Principled Disentanglement for Domain Generalization》(2021)

GitHub: github.com/hlzhang109/DDG

  • 《SoundStream: An End-to-End Neural Audio Codec》(2021)

GitHub: github.com/wesbz/SoundStream

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/389320.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一步一步学会给Fritzing添加元器件-丰富你的器件库

文章目录1、获取元器件文件2、单个添加元器件3、批量加入&#xff08;1&#xff09;、通过别人发布的bin文件加载&#xff08;2&#xff09;、终极大招&#xff08;拖&#xff09;4、制作自己器件文章出处&#xff1a; https://blog.csdn.net/haigear/article/details/12931545…

【C++】类和对象——六大默认成员函数

&#x1f3d6;️作者&#xff1a;malloc不出对象 ⛺专栏&#xff1a;C的学习之路 &#x1f466;个人简介&#xff1a;一名双非本科院校大二在读的科班编程菜鸟&#xff0c;努力编程只为赶上各位大佬的步伐&#x1f648;&#x1f648; 目录前言一、类的6个默认成员函数二、构造…

错误异常捕获

1、React中错误异常捕获 在 React 中&#xff0c;可以通过 Error Boundaries&#xff08;错误边界&#xff09;来捕获错误异常。Error Boundaries 是一种 React 组件&#xff0c;它可以在其子组件树的渲染期间捕获 JavaScript 异常&#xff0c;并且可以渲染出备用 UI。React 提…

802.11 service服务类型

802.11 serviceservice定义service分类按照模块分为两类按照功能分为六类数据传输相关服务分布式服务DS&#xff08;Distribution Service&#xff09;整合服务IS&#xff08;Integration Service&#xff09;关联&#xff08;association&#xff09;重关联&#xff08;reasso…

RAD 11.3 delphi和C++改进后新增、废弃及优化的功能

RAD 11.3 delphi和C改进后新增和废弃的功能 目录 RAD 11.3 delphi和C改进后新增和废弃的功能 一、版本RAD 11.3 delphi和C改进后新增功能 1、官方视频位置&#xff1a; 2、官方文档的链接位置&#xff1a; 二、版本RAD 11.3 delphi和C改进后废弃的功能 2.1、编译器不再使…

Eureka注册中心和Nacos注册中心详解以及Nacos与Eureka有什么区别?

目录&#xff1a;前言Eureka注册中心Nacos注册中心Nacos与Eureka有什么区别&#xff1f;前言提供接口给其它微服务调用的微服务叫做服务提供者&#xff0c;而调用其它微服务提供的接口的微服务则是服务消费者。如果服务A调用了服务B&#xff0c;而服务B又调用了服务C&#xff0…

【iOS】设置背景渐变色

drawRect函数 主要负责iOS的绘图操作&#xff0c;程序会自动调用此方法进行绘图。我在这个函数中绘制渐变背景色。 方法定义&#xff1a; -(void)drawRect:(CGRect)rect; 重写此方法&#xff0c;执行重绘任务-(void)setNeedsDisplay; 标记为需要重绘&#xff0c;异步调用dra…

Mysql开发

Mysql开发 可以使用MySQL直接存储文件吗&#xff1f; 可以使用 BLOB (binary large object)&#xff0c;用来存储二进制大对象的字段类型。 TinyBlob 255 值的长度加上用于记录长度的1个字节(8位) Blob 65K值的长度加上用于记录长度的2个字节(16位) MediumBlob 16M值的长度加…

vue-v-for列表渲染中key的作用

1.虚拟DOM中key的作用: key是点拟DON对象的标识&#xff0c;当状态中的数据发生变化时&#xff0c;Vue会根据【新数据】生成【新的虚拟DOM】,随后Vue进行【新虚拟DOM】与【旧虚拟DOM】的差异比较&#xff0c;比较规则如下 2.对比规则: 旧虚拟DOM中找到了与新虚拟DOM相同的ke…

【NLP相关】ChatGPT的前世今生:GPT模型的原理、研究进展和案例

❤️觉得内容不错的话&#xff0c;欢迎点赞收藏加关注&#x1f60a;&#x1f60a;&#x1f60a;&#xff0c;后续会继续输入更多优质内容❤️&#x1f449;有问题欢迎大家加关注私戳或者评论&#xff08;包括但不限于NLP算法相关&#xff0c;linux学习相关&#xff0c;读研读博…

【二分查找】分巧克力、机器人跳跃、数的范围

Halo&#xff0c;这里是Ppeua。平时主要更新C语言&#xff0c;C&#xff0c;数据结构算法......感兴趣就关注我吧&#xff01;你定不会失望。 &#x1f308;个人主页&#xff1a;主页链接 &#x1f308;算法专栏&#xff1a;专栏链接 我会一直往里填充内容哒&#xff01; &…

二层如何避免loop 的产生

STP是一个用于局域网中消除环路的协议。STP通过构造一棵树来消除交换网络中的环路二层交换机二层交换机不具备路由能力&#xff0c;主要功能有三种1&#xff09;地址学习&#xff08;address learning&#xff09;&#xff1a;通过查看帧的源MAC地址来加紧转发/过滤表的MAC地址…

django框架开发部署项目

前言&#xff1a;相信看到这篇文章的小伙伴都或多或少有一些编程基础&#xff0c;懂得一些linux的基本命令了吧&#xff0c;本篇文章将带领大家服务器如何部署一个使用django框架开发的一个网站进行云服务器端的部署。 文章使用到的的工具 Python&#xff1a;一种编程语言&…

工作负载使用教程

主要包括YCSB和背景一、安装Java二、安装Memcached数据库并配置三、修改YCSB脚本文件四、运行YCSB脚本五、运行GAPBS总结背景 测试multi-clock内核的内存性能有啥提升 YCSB&#xff1a;雅虎推出的云数据库基准测试套件 参考论文MULTI-CLOCK: Dynamic Tiering for Hybrid Memor…

03-产品解决方案:需求分析、功能优先级划分、功能价值、用户体验

文章目录3.1 需求分析3.1.1 需求分析的目的3.1.2 需求分析的方法&#xff08;Y模型&#xff09;3.1.3 需求分析的具体应用3.2 功能优先级划分Kano模型3.3 功能价值3.3.1 什么是功能价值&#xff1f;3.3.2 实际价值判断3.3.3 成本评估3.4 用户体验3.4.1 用户体验的定义及影响因素…

IDEA 每次新建工程都要重新配置 Maven 解决方案

IDEA 每次新建工程都要重新配置 Maven 解决方案 IDEA 每次新建工程都要重新配置 Maven&#xff0c;是一件相当浪费时间的事情。这是因为在创建一个项目后&#xff0c;在 File -> Settings -> Build,Execution,Deployment -> Build Tools -> Maven下配置了 Maven h…

华为OD机试用Python实现 -【停车找车位】 |2023.Q1 A卷

华为OD机试题 最近更新的博客华为 OD 机试 300 题大纲本篇题目:停车找车位题目描述输入描述输出描述示例一输入输出示例二输入输出代码编写思路Python 代码最近更新的博客 华为od 2023 | 什么是华为od,od 薪资待遇,od机试题清单华为OD机试真题大全,用 Python 解华为机试题

QML编码约定

QML中的国际化&#xff1a; QML使用以下函数来将字符串标记为可翻译的 qsTr()qsTranslate()qsTrld()QT_TR_NOOP()QT_TRANSLATE_NOOP()QT_TRID_NOOP最常用的还是qsTr&#xff08;&#xff09; string qsTr&#xff08;string sourceText&#xff0c; string disambiguation&…

Linux- 系统随你玩之--文件管理-双生姐妹花

文章目录1、前言2、文件管理-双生姐妹花2.1、 df2.1.1、 df 语法2.1.1 、常用参数2.2、 du2.2.1、du 语法2.1.1、 常用参数2.3、双生姐妹花区别2.3.1、 查看文件统计 的计算方式不同2.3.2 、删除文件情况下统计结果 不同2.3.3 、针对双生姐妹花区别 结语3、双生姐妹花实操3.1 、…

[2019红帽杯]childRE

题目下载&#xff1a;下载 参考&#xff1a;re学习笔记&#xff08;24&#xff09;BUUCTF-re-[2019红帽杯]childRE_Forgo7ten的博客-CSDN博客 这道题涉及到c函数的修饰规则&#xff0c;按照规则来看应该是比较容易理解的。上面博客中有总结规则&#xff0c;可以学习一下。 载…