【java基础】万字说明,一篇文章彻底搞懂java中的lambda表达式

news2024/11/24 17:39:16

文章目录

  • lambda表达式是什么
  • lambda表达式的语法
  • 函数式接口
    • 初次使用
    • 深入理解
  • 方法引用 :: 用法
    • 快速入门
    • 不同形式的::
      • 情况1 object::instanceMethod
      • 情况2 Class::instanceMethod
      • 情况3 Class::staticMethod
    • 对于 :: 的一些示例及其注意事项
  • 构造器引用
  • 变量作用域
    • 使用外部变量
    • 定义内部变量
    • this指向问题
  • lambda的好处
  • 常见的函数式接口
  • 自己设计一个支持lambda的方法
  • 自定义函数式接口
  • 总结

lambda表达式是什么

lambad表达式是一个可传递的代码块,可以在以后执行一次或者多次。

我们都知道java是面向对象的语言,我们在进行方法传递时,并不能直接传递代码段,而是要传递一个对象,这个对象中有一个方法包含了想要传递的代码段。

例如Arrays.sort就要一个Comparator接口,我们就只能传递一个实现该接口的对象。

        Integer[] nums = {4, 1, 3, 2};
        Arrays.sort(nums, new Comparator<Integer>() {
            @Override
            public int compare(Integer o1, Integer o2) {
                return o2 - o1;
            }
        });

在其他一些语言中,可以直接处理代码块,但是java一直没有增加这个特性,因为java的强大之处就在于其简单性和一致性。好在在jdk8中加入了一种lambad的设计,我们可以使用lambda就可以实现类似代码块传递的功能,极大的简化了代码。
我们上面的代码使用lambad就可以改写为如下形式

        Integer[] nums = {4, 1, 3, 2};
        Arrays.sort(nums, (o1, o2) -> o2 - o1);

lambda表达式的语法

这里我先简单说明一下,lambda表达式其实就是用来实现某个抽象方法的,并且某个抽象类或者接口只有一个抽象方法才能使用lambda表达式。下面的例子也是基于String类型的Comparator中的compare抽象方法

在这里插入图片描述

lambda的语法就是 (参数) -> {代码逻辑}
我们利用lambda来实现方法,一个简单的例子如下

		(String s1, String s2) -> {
            return s1.length() - s2.length();
        };

如果代码块里面只有一行语句,那么就可以省略大括号,直接写在一行

(String s1, String s2) -> s1.length() - s2.length();

写在一行就可以省略return关键字了
关于lambda并不是一定要有返回值,是否要有返回值是却决于要实现的抽象方法是否有返回值的。

对于一个lambda方法,在很多情况下都是可以省略参数上面的类型的,因为编译器可以推断出

(s1, s2) -> s1.length() - s2.length();

对于只有一个参数的lambda,我们可以省略参数的括号。对于没有参数的lambda我们又必须要写上该括号

s -> s.length();
() -> System.out.println(1);

这里介绍了lambda的一些形式,看不懂不要紧,下面就开始具体说明。

函数式接口

对于只有一个抽象方法的接口,需要这种接口的对象时,我们就可以提供一个lambda表达式。这种接口就称为函数式接口。

初次使用

我们还是来看一下Arrays.sort方法

在这里插入图片描述
该sort方法就需要提供一个实现Comparator的接口。下面再来看一下Comparator接口

在这里插入图片描述
这个接口有很多方法,但是只有compare是抽象方法,其他都有默认实现,所以这个就符合函数式接口的定义,我们使用Arrays.sort方法时,就不需要传入一个实现Comparator的对象,只需要传入一个lambda的表达式就行了。

下面就是使用lambda就行排序的例子

public class People {
    private String name;
    private Integer age;

    public People(String name, Integer age) {
        this.name = name;
        this.age = age;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public Integer getAge() {
        return age;
    }

    public void setAge(Integer age) {
        this.age = age;
    }

    @Override
    public String toString() {
        return "People{" +
                "name='" + name + '\'' +
                ", age=" + age +
                '}';
    }
}

我们有一个People对象数组,现在要求对这个数组进行排序,排序要求为按照名称的长度排序,升序

        People[] people = {
                new People("cc", 19),
                new People("ttpfx", 21),
                new People("tom", 26),
                new People("lucy", 20)
        };

我们要使用lambda表达式,首先要搞清楚用lambda所对应的抽象方法,我们这里要实现的方法就是compare方法,传入2个参数,返回一个int
在这里插入图片描述
这里的T就是一个泛型,由于我们是对People排序,所以T就是代表People对象。知道了这些,我们就可以写lambda表达式了。

Arrays.sort(people, (p1, p2) -> p1.getName().length() - p2.getName().length());

上面的代码就可以实现People数组按照名称长度升序排列

对应lambda表达式,我们最好将其看作是一个函数,而不是一个对象。

深入理解

对于上面lambda表达式,我们还可以简写,形式如下

Arrays.sort(people, Comparator.comparingInt(p -> p.getName().length()));

对于上面的表达式,我来进行说明一下,由于Arrays.sort需要一个Comparator,所以我们需要提供一个Comparator,但是Comparator.comparingInt会返回一个Comparator。所以没问题

在这里插入图片描述

又由于comparingInt需要接受一个ToIntFunction,我们再来看一下ToIntFunction

在这里插入图片描述

可以发现ToIntFunction就只有一个抽象方法,所以我们又可以使用lambda表达式,最终的形式就是下面那样的。

Arrays.sort(people, Comparator.comparingInt(p -> p.getName().length()));

对于泛型,默认大家都是很了解的,这篇文章不会进行讲解,如果感觉有点看不懂了,请先去学习泛型

方法引用 :: 用法

快速入门

有的时候,如果我们lambda涉及到一个方法,例如我们创建了一个定时器,要求每秒打印一下这个事件对象,代码如下

Timer timer = new Timer(1000, event -> System.out.println(event));

这里为什么可以使用lambda表达式,大家应该都可以猜出来了,原因就是Timer的第二个参数是应该函数式接口,只有一个抽象方法,Timer的第二个参数内容如下。

在这里插入图片描述

对于上面的写法我们可以简写为如下形式

Timer timer = new Timer(1000, System.out::println);

对于 System.out::println 这个写法可能已经很多人蒙了,这是啥东西啊。其实 System.out::println 就是一个方法引用,就代表引用System.out对象的println方法。System.out::println指示编译器生成一个函数式接口的实例,覆盖这个接口的抽象方法来调用给定的方法。相信大家看完还是很蒙,下面就再通俗的解释一下。

  • 我们通过ActionListener源代码可以发现actionPerformed会传入一个 ActionEvent对象 e,返回值为void,也就是没有返回值。
  • 我们再来看一下System.out的println的方法
    在这里插入图片描述
    可以发现println接受一个Object的参数,返回值也是void
  • 我们将 actionPerformed 和 println 进行对比,是不是发现很相似呢?对于actionPerformed 的参数,我们也可以通过Object来进行接收。
  • 我们再lambda表达式里面编写的逻辑就是打印参数,println的任务就是打印,既然如此,那为什么我们不直接将println这个方法用来覆盖actionPerformed 掉方法呢?
  • 事实上System.out::println,我们就是用println方法覆盖掉了actionPerformed 方法,我们调用actionPerformed(e)时,实际上就是调用println(e)方法了。

对于上面的说明,仅仅为个人的理解。如果有误还请在评论区指出。

如果要使用 :: 形式的lambda表达式,必须返回值相同,参数个数相同,参数类型相同或者为父类

不同形式的::

对于使用::分隔方法名与对象名或类名,主要有以下3种情况

  • object::instanceMethod
  • Class::instanceMethod
  • Class::staticMethod

情况1 object::instanceMethod

在第一种情况下,方法引用等价于向方法传递参数的lambda的表达式。例如上面的System.out::printl1n就等价于 x -> System.out.println(x)

情况2 Class::instanceMethod

对于这种情况,我先举一个例子,现在有一个要求就是对String数组按照字母升序排列,忽略大小写

        String[] names = {"Tom", "CC", "tTpfx", "JURY"};

对于上面的要求,经过上面要求,我们该怎么完成呢?通过上面的lambda的学习,我们可以通过lambda表达式完成,我们调用compareToIgnoreCase这个方法进行比较就行了

        Arrays.sort(names, (name1, name2) -> name1.compareToIgnoreCase(name2));

我们来看一下compareToIgnoreCase的源代码

在这里插入图片描述
可以发现这个和我们要传入Comparator的compare方法参数和返回类型都是一样,这样那我们岂不是就可以使用::的写法了。也确实是这样的。::写法如下

        Arrays.sort(names, String::compareToIgnoreCase);

可以发现十分的简洁。

经过上面的例子,现在就可以对上面的 Class::instanceMethod 进行说明了,Class就代表类名,instanceMethod 就代表静态方法。对于这种情况,第一个参数就会成为隐式参数。也就是说String::compareToIgnoreCase 相当于 (name1, name2) -> name1.compareToIgnoreCase(name2)

情况3 Class::staticMethod

这种情况就不举例了,理解了情况2现在来理解这个很简单。Class::staticMethod就相当于将所有参数传递到参数列表,例如 Math::pow 就等价于 (a,b) -> Math.pow(a,b)

对于 :: 的一些示例及其注意事项

下图就是::的一些示例

在这里插入图片描述

对于::的注意事项如下

  • 只有当lambda表达式的体只调用一个方法并且不做其他操作时,才可以把lambda表达式重写为方法引用
  • 如果要引用的方法具有多个重载的方法,编译器会找出最相似的方法
  • 方法引用不能单独存在,总是会转换为函数式接口的实例
  • 包含对象的方法引用与等价的lambda表达式还有一个细微的差别。考虑一个方法法引用,如separator::equals.。如果separator为null,构造separator::equals时就会立抛出一个异常。lambda表达式x -> separator.equals(x)只在调用时才会拋出NullPointerException。
  • 对于::我们可以使用this和super,this代表当前类,super表示父类

构造器引用

构造器引用和方法引用很类似,只不过将方法名换成了new,下面就是应该例子

public class Cat {
    public Cat() {
    }

    public Cat(Cat cat) {
    }
}

下面代码将一个集合转换为数组

    @Test
    public void t4() {
        List<Cat> list = new ArrayList<>();
        list.add(new Cat());
        list.add(new Cat());
        Stream<Cat> stream = list.stream().map(Cat::new);
        Cat[] cats = stream.toArray(Cat[]::new);
        System.out.println(Arrays.toString(cats));
    }

里面的第一个Cat::new 就代表引用构造器。相当于 c -> new Cat©
第二个Cat[]::new 相当于 x -> new Cat[x]

变量作用域

使用外部变量

在lambda表达式中,我们使用的外部变量必须是最终变量或实际上的最终变量。
例如下面代码是没有问题的

    @Test
    public void t1() {
        int i = 1;
        Integer[] nums = {2, 1, 3};
        Arrays.sort(nums, (n1, n2) -> {
            System.out.println(i);
            return n2 - n1;
        });
        System.out.println(Arrays.toString(nums));
    }

我们在lambda里面打印i的值,没有任何问题。但是我们如果将i的值改变

    @Test
    public void t1() {
        int i = 1;
        Integer[] nums = {2, 1, 3};
        i++;
        Arrays.sort(nums, (n1, n2) -> {
            System.out.println(i);
            return n2 - n1;
        });
        System.out.println(Arrays.toString(nums));
    }

此时再运行,编译器就会输出如下信息

在这里插入图片描述

IDEA也会给出以下提示,告诉我们变量的值是不能够改变的

在这里插入图片描述

定义内部变量

对于lambda表达式,我们再里面还不能够定义与外部变量相同的参数名称,例如下面代码

    @Test
    public void t1() {
        int i = 1;
        Integer[] nums = {2, 1, 3};
        Arrays.sort(nums, (n1, n2) -> {
            int i = 0;
            return n2 - n1;
        });
        System.out.println(Arrays.toString(nums));
    }

我们再lambda里面定义了与外部变量同名的i变量,这时候IDEA就会给出以下提示

在这里插入图片描述

如果运行就会报错

在这里插入图片描述

this指向问题

在lambda里面的this就是创建lambda那个方法的this。

    @Test
    public void t2() {
        Integer[] nums = {2, 1};
        System.out.println(this.getClass().hashCode());
        Arrays.sort(nums, (n1, n2) -> {
            System.out.println(this.getClass().hashCode());
            return n2 - n1;
        });
    }

上面代码输出如下

在这里插入图片描述
也就代表这两个this是一样的。

lambda的好处

我们使用lambda的重点就是延迟执行,lambda只有在调用时才会执行。对于为什么需要延迟执行,参考下面的几点

  • 在一个单独的线程中运行代码
  • 多次运行代码
  • 在算法的适当位置运行代码(例如,排序中的比较操作)
  • 发生某种情况时执行代码(如,点击了一个按钮,数据到达,等等)
  • 只在必要时才运行代码

常见的函数式接口

我们如果也想要编写支持lambda表达式的方法,我们就可以使用函数式接口来完成,不需要自己再去定义接口,下面就会列出一些常见的函数式接口

在这里插入图片描述

下图列出了基本类型int、long和double的34个可用的特殊化接口。使用这些特殊化接口比使用通用接口更高效。这些后面的博客中会进行说明

在这里插入图片描述

自己设计一个支持lambda的方法

我们就使用上面提供的一些函数式接口来设计一个支持lambda的方法
这个方法就使用到了Predicate这个函数式接口,对于这个接口忘了请参考如下

在这里插入图片描述

该接口源代码为

在这里插入图片描述

我们设计的方法如下

public class DesignLambdaMethod {

    public static <T> List<T> filterList(List<T> list, Predicate<T> predicate) {
        List<T> tList = new ArrayList<>();
        for (T t : list) {
            if (predicate.test(t)) {
                tList.add(t);
            }
        }
        return tList;
    }
}

这个方法接收一个List,然后接收一个Predicate,如果Predicate中的test方法返回为真,那么我们就不进行处理,否则就将其移除List。这个方法就可以用于过滤List。
具体使用如下

    public static void main(String[] args) {
        List<String> list = Arrays.asList("tom", "jack", "ttpfx", "mike", "lc");
        System.out.println(list);
        // 要求过滤掉list中的长度小于等于3的字符串
        List<String> newList = filterList(list, s -> s.length() > 3);
        System.out.println(newList);
    }

上面的程序运行后输出如下,成功完成需求

在这里插入图片描述

自定义函数式接口

对于函数式接口的定义想必大家已经很清楚了,只需要在接口有且只有抽象方法就是一个函数式接口。下面就是自定义的一个函数式接口

public interface MyInterface {

     <R> void apply(R r);
}

对于函数式接口,我们可以使用@FunctionalInterface进行标识。这样做有2个优点,如下

  • 如果你无意中增加了另一个抽象方法,编译器会产生一个错误消息
  • javadoc页里会指出你的接口是一个函数式接口。
@FunctionalInterface
public interface MyInterface {

     <R> void apply(R r);
}

如果使用@FunctionalInterface后,我们再增加一个抽象方法,那么就会出现以下错误信息

在这里插入图片描述

最后需要说明的是并不是一定要@FunctionalInterface接口,但是建议所有的函数式接口都使用该接口进行标识

总结

相信大家经过上面的讲解,对于lambda应该已经有了些大概的了解。这篇文章是根据我自己对lambda的理解写出的,如果讲解中有错误的地方还请评论区指出,共同提高

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/383931.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

华为机试题:HJ96 表示数字(python)

文章目录&#xff08;1&#xff09;题目描述&#xff08;2&#xff09;Python3实现&#xff08;3&#xff09;知识点详解1、input()&#xff1a;获取控制台&#xff08;任意形式&#xff09;的输入。输出均为字符串类型。1.1、input() 与 list(input()) 的区别、及其相互转换方…

软件成分安全分析(SCA)能力的建设与演进

**前言 ** 随着 DevSecOps 概念的逐渐推广和云原生安全概念的快速普及&#xff0c;研发安全和操作环境安全现在已经变成了近两年行业非常热的词汇。在研发安全和应急响应的日常工作中&#xff0c;每天都会收到大量的安全风险信息&#xff0c;由于目前在系统研发的过程中&#…

【反序列化漏洞-02】PHP反序列化漏洞实验详解

为什么要序列化百度百科上关于序列化的定义是&#xff0c;将对象的状态信息转换为可以存储或传输的形式(字符串)的过程。在序列化期间&#xff0c;对象将其当前状态写入到临时或持久性存储区(非关系型键值对形式的数据库Redis&#xff0c;与数组类似)。以后&#xff0c;可以通过…

2023新版PMP考试有哪些变化?

对于2022年很多事情也都在发生&#xff0c;疫情也都没有完全结束&#xff0c;基金会已经开始通知下一场考试了&#xff0c;很多人也会担心新的考纲会不会给自己带来难度&#xff0c;其实这次六月份的考试很多人都内心已经知道了结果&#xff0c;所以这里也详细说一下新考纲的改…

大数据之Apache Doris_亚秒级响应_大数据处理分析_介绍_概述---大数据之Apache Doris工作笔记0001

可以看到这个Doris的介绍 MPP是大规模并行处理 这里的clickhouse ,greenplumn也是mpp,大规模并行处理数据库 应用场景 然后我们看一下doris的架构,可以看到,这里,左侧是数据来源,可以看到这个数据来源有 OLTP数据库,比如mysql,oracle等等这种数据库,还有就是enterprise appli…

Supporting Clustering with Contrastive Learning笔记

这篇文章使用了对比学习进行了聚类&#xff0c;一种端到端的离线聚类模型。 主要流程 Feature model 比较主流的句向量编码器SBERT。本文主要使用两个损失函数去微调SBERT的参数。使得SBERT的生成的特征表示具有以下两个特点&#xff1a; 簇间距离拉大&#xff08;inter-cl…

并发编程(2)—Java 对象内存布局及 synchornized 偏向锁、轻量级锁、重量级锁介绍

一、Java 对象内存布局 1、对象内存布局 一个对象在 Java 底层布局&#xff08;右半部分是数组连续的地址空间&#xff09;&#xff0c;如下图示&#xff1a; 总共有三部分总成&#xff1a; 1. 对象头&#xff1a;储对象的元数据&#xff0c;如哈希码、GC 分代年龄、锁状态…

Android中的OpenGL

前面有关 Android 音视频的渲染都是使用MediaCodec进行渲染&#xff0c;MediaCodec也有自己的弊端比如无法进行视频的编辑处理&#xff0c;而视频可以 OpenGL ES来进行渲染&#xff0c;可以很好进行处理&#xff0c;比如添加滤镜等&#xff0c;这里介绍下 Android 中 OpenGL&am…

GrowingIO是什么?如何将GrowingIO数据导入其他系统

GrowingIO是什么&#xff1f;GrowingIO 是一站式数据增长引擎整体方案服务商&#xff0c;以数据智能分析为核心&#xff0c;通过构建客户数据平台&#xff0c;打造增长营销闭环&#xff0c;帮助企业提升数据驱动能力&#xff0c;赋能商业决策、实现业务增长。GrowingIO 专注于零…

MyBatis-Plus框架解析?

简单介绍&#xff1a;MyBatis-Plus&#xff08;简称 MP&#xff09;&#xff08;由苞米豆公司开源&#xff09;是一个 MyBatis 的增强工具&#xff0c;在 MyBatis 的基础上只做增强不做改变&#xff0c;为简化开发、提高效率而生。MP会内置集成部分SQL方法&#xff0c;可以直接…

【应用管理总结 Objective-C语言】

一、把应用管理这个案例,给大家总结一下: 1.今天,经过一天的努力,我们终于把这个九宫格应用管理案例的所有功能都实现了吧, 我们一起来,一边看效果,一边来总结, 2.大家先想一下,当我们实现这个效果,按照最终的那个版本来想一下,这个代码是什么样的一个思路, 1)…

QT打包的两种方式

QT打包的两种方式&#xff1a; 一个是QT5自带的windeployqt&#xff08;不需要下载安装&#xff09;&#xff0c;它可以找到程序&#xff08;exe&#xff09;用到的所有库文件&#xff0c;并且都拷贝到exe程序的当前文件。此时打包的exe较小&#xff0c;需要和拷贝进来的文件放…

大话数据结构-图的深度优先遍历和广度优先遍历

4 图的遍历 图的遍历分为深度优先遍历和广度优先遍历两种。 4.1 深度优先遍历 深度优先遍历&#xff08;Depth First Search&#xff09;&#xff0c;也称为深度优先搜索&#xff0c;简称DFS&#xff0c;深度优先遍历&#xff0c;是指从某一个顶点开始&#xff0c;按照一定的规…

抗锯齿和走样(笔记)

Artifacts&#xff08;瑕疵&#xff09;&#xff1a; 比如人眼采样频率跟不上陀螺的旋转速度&#xff0c;这时就有可能看到陀螺在反方向旋转怎么做抗锯齿&#xff08;滤波&#xff09;&#xff1a; 在采样之前先进行一个模糊操作&#xff0c;可以降低锯齿的明显程度 通过傅里叶…

七【SpringMVC参数绑定】

目录&#x1f6a9;一 . 视图传参到控制器&#x1f6a9;二 . SpringMVC跳转方式&#x1f6a9;三 SpringMVC处理json请求和响应&#x1f6a9;四 SpringMVC静态资源处理✅作者简介&#xff1a;Java-小白后端开发者 &#x1f96d;公认外号&#xff1a;球场上的黑曼巴 &#x1f34e;…

Flask自定义接口,实现mock应用

问题&#xff1a;后端接口已提供&#xff0c;前端需要依赖后端接口返回的数据进行前端页面的开发&#xff0c;如何配合前端&#xff1f; mock接口 flask自定义接口实现查询接口&#xff1a;查询全部、部分查询 具体看下面的代码&#xff1a; #导入包 from flask import Fla…

企业如何选择固定资产管理系统?

如何促进企业内部信息化的建设&#xff0c;实现企业的高效管理和运转&#xff0c;是企业管理员经常考虑的问题。尤其是企业资金占比较多的固定资产该如何高效管理&#xff0c;是大家经常你讨论的问题。我们都知道行政部门管理着百上千件物品&#xff0c;且还要定期进行盘点&…

【python】标准库详解

注&#xff1a;最后有面试挑战&#xff0c;看看自己掌握了吗 文章目录Standard Library简介python内置对象如何安装发布第三方模块10最好用的模块汇总包的本质datetime模块案例Math模块random模块OS模块sys模块time模块总结自定义模块标准库模块用help查看time模块常用第三方库…

30 openEuler使用LVM管理硬盘-简介和安装

文章目录30 openEuler使用LVM管理硬盘-简介和安装30.1 LVM简介30.1.1 基本概念30.2 安装30 openEuler使用LVM管理硬盘-简介和安装 30.1 LVM简介 LVM是逻辑卷管理&#xff08;Logical Volume Manager&#xff09;的简称&#xff0c;它是Linux环境下对磁盘分区进行管理的一种机…

【苹果内购支付】关于uniapp拉起苹果内购支付注意事项、实现步骤以及踩过的坑

前言 Hello&#xff01;又是很长时间没有写博客了&#xff0c;因为最近又开始从事新项目&#xff0c;也是第一次接触关于uniapp开发原生IOS应用的项目&#xff0c;在这里做一些关于我在项目中使用苹果内购支付所实现的方式以及要注意的事项&#xff0c;希望能给正在做uniapp开…