登峰造极,师出造化,Pytorch人工智能AI图像增强框架ControlNet绘画实践,基于Python3.10

news2025/1/9 5:57:00

人工智能太疯狂,传统劳动力和内容创作平台被AI枪毙,弃尸尘埃。并非空穴来风,也不是危言耸听,人工智能AI图像增强框架ControlNet正在疯狂地改写绘画艺术的发展进程,你问我绘画行业未来的样子?我只好指着ControlNet的方向。本次我们在M1/M2芯片的Mac系统下,体验人工智能登峰造极的绘画艺术。

本地安装和配置ControlNet

ControlNet在HuggingFace训练平台上也有体验版,请参见: https://huggingface.co/spaces/hysts/ControlNet,但由于公共平台算力有限,同时输入参数也受到平台的限制,一次只能训练一张图片,不能让人开怀畅饮。

为了能和史上最伟大的图像增强框架ControlNet一亲芳泽,我们选择本地搭建ControlNet环境,首先运行Git命令拉取官方的线上代码:

git clone https://github.com/lllyasviel/ControlNet.git

拉取成功后,进入项目目录:

cd ControlNet

由于Github对文件大小有限制,所以ControlNet的训练模型只能单独下载,模型都放在HuggingFace平台上:https://huggingface.co/lllyasviel/ControlNet/tree/main/models,需要注意的是,每个模型的体积都非常巨大,达到了5.71G,令人乍舌。

下载好模型后,需要将其放到ControlNet的models目录中:

├── models  
│ ├── cldm_v15.yaml  
│ ├── cldm_v21.yaml  
│ └── control_sd15_canny.pth

这里笔者下载了control_sd15_canny.pth模型,即放入models目录中,其他模型也是一样。

随后安装运行环境,官方推荐使用conda虚拟环境,安装好conda后,运行命令激活虚拟环境即可:

conda env create -f environment.yaml  
conda activate control

但笔者查看了官方的environment.yaml配置文件:

name: control  
channels:  
  - pytorch  
  - defaults  
dependencies:  
  - python=3.8.5  
  - pip=20.3  
  - cudatoolkit=11.3  
  - pytorch=1.12.1  
  - torchvision=0.13.1  
  - numpy=1.23.1  
  - pip:  
      - gradio==3.16.2  
      - albumentations==1.3.0  
      - opencv-contrib-python==4.3.0.36  
      - imageio==2.9.0  
      - imageio-ffmpeg==0.4.2  
      - pytorch-lightning==1.5.0  
      - omegaconf==2.1.1  
      - test-tube>=0.7.5  
      - streamlit==1.12.1  
      - einops==0.3.0  
      - transformers==4.19.2  
      - webdataset==0.2.5  
      - kornia==0.6  
      - open_clip_torch==2.0.2  
      - invisible-watermark>=0.1.5  
      - streamlit-drawable-canvas==0.8.0  
      - torchmetrics==0.6.0  
      - timm==0.6.12  
      - addict==2.4.0  
      - yapf==0.32.0  
      - prettytable==3.6.0  
      - safetensors==0.2.7  
      - basicsr==1.4.2

一望而知,Python版本是老旧的3.8,Torch版本1.12并不支持Mac独有的Mps训练模式。

同时,Conda环境也有一些缺点:

环境隔离可能会导致一些问题。虽然虚拟环境允许您管理软件包的版本和依赖关系,但有时也可能导致环境冲突和奇怪的错误。

Conda环境可以占用大量磁盘空间。每个环境都需要独立的软件包副本和依赖项。如果需要创建多个环境,这可能会导致磁盘空间不足的问题。

软件包可用性和兼容性也可能是一个问题。Conda环境可能不包含某些软件包或库,或者可能不支持特定操作系统或硬件架构。

在某些情况下,Conda环境的创建和管理可能会变得复杂和耗时。如果需要管理多个环境,并且需要在这些环境之间频繁切换,这可能会变得困难。

所以我们也可以用最新版的Python3.10来构建ControlNet训练环境,编写requirements.txt文件:

pytorch==1.13.0  
gradio==3.16.2  
albumentations==1.3.0  
opencv-contrib-python==4.3.0.36  
imageio==2.9.0  
imageio-ffmpeg==0.4.2  
pytorch-lightning==1.5.0  
omegaconf==2.1.1  
test-tube>=0.7.5  
streamlit==1.12.1  
einops==0.3.0  
transformers==4.19.2  
webdataset==0.2.5  
kornia==0.6  
open_clip_torch==2.0.2  
invisible-watermark>=0.1.5  
streamlit-drawable-canvas==0.8.0  
torchmetrics==0.6.0  
timm==0.6.12  
addict==2.4.0  
yapf==0.32.0  
prettytable==3.6.0  
safetensors==0.2.7  
basicsr==1.4.2

随后,运行命令:

pip3 install -r requirements.txt

至此,基于Python3.10来构建ControlNet训练环境就完成了,关于Python3.10的安装,请移玉步至:一网成擒全端涵盖,在不同架构(Intel x86/Apple m1 silicon)不同开发平台(Win10/Win11/Mac/Ubuntu)上安装配置Python3.10开发环境,这里不再赘述。

修改训练模式(Cuda/Cpu/Mps)

ControlNet的代码中将训练模式写死为Cuda,CUDA是NVIDIA开发的一个并行计算平台和编程模型,因此不支持NVIDIA GPU的系统将无法运行CUDA训练模式。

除此之外,其他不支持CUDA训练模式的系统可能包括:

没有安装NVIDIA GPU驱动程序的系统

没有安装CUDA工具包的系统

使用的NVIDIA GPU不支持CUDA(较旧的GPU型号可能不支持CUDA)

没有足够的GPU显存来运行CUDA训练模式(尤其是在训练大型深度神经网络时需要大量显存)

需要注意的是,即使系统支持CUDA,也需要确保所使用的机器学习框架支持CUDA,否则无法使用CUDA进行训练。

我们可以修改代码将训练模式改为Mac支持的Mps,请参见:闻其声而知雅意,M1 Mac基于PyTorch(mps/cpu/cuda)的人工智能AI本地语音识别库Whisper(Python3.10),这里不再赘述。

如果代码运行过程中,报下面的错误:

RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with map_location=torch.device('cpu') to map your storages to the CPU.

说明当前系统不支持cuda模型,需要修改几个地方,以项目中的gradio_canny2image.py为例子,需要将gradio_canny2image.py文件中的cuda替换为cpu,同时修改/ControlNet/ldm/modules/encoders/modules.py文件,将cuda替换为cpu,修改/ControlNet/cldm/ddim_hacked.py文件,将cuda替换为cpu。至此,训练模式就改成cpu了。

开始训练

修改完代码后,直接在终端运行gradio_canny2image.py文件:

python3 gradio_canny2image.py

程序返回:

➜  ControlNet git:(main) ✗ /opt/homebrew/bin/python3.10 "/Users/liuyue/wodfan/work/ControlNet/gradio_cann  
y2image.py"  
logging improved.  
No module 'xformers'. Proceeding without it.  
/opt/homebrew/lib/python3.10/site-packages/pytorch_lightning/utilities/distributed.py:258: LightningDeprecationWarning: `pytorch_lightning.utilities.distributed.rank_zero_only` has been deprecated in v1.8.1 and will be removed in v2.0.0. You can import it from `pytorch_lightning.utilities` instead.  
  rank_zero_deprecation(  
ControlLDM: Running in eps-prediction mode  
DiffusionWrapper has 859.52 M params.  
making attention of type 'vanilla' with 512 in_channels  
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.  
making attention of type 'vanilla' with 512 in_channels  
Loaded model config from [./models/cldm_v15.yaml]  
Loaded state_dict from [./models/control_sd15_canny.pth]  
Running on local URL:  http://0.0.0.0:7860  
  
To create a public link, set `share=True` in `launch()`.

此时,在本地系统的7860端口上会运行ControlNet的Web客户端服务。

访问 http://localhost:7860,就可以直接上传图片进行训练了。

这里以本站的Logo图片为例子:

通过输入引导词和其他训练参数,就可以对现有图片进行扩散模型的增强处理,这里的引导词的意思是:红宝石、黄金、油画。训练结果可谓是言有尽而意无穷了。

除了主引导词,系统默认会添加一些辅助引导词,比如要求图像品质的best quality, extremely detailed等等,完整代码:

from share import *  
import config  
  
import cv2  
import einops  
import gradio as gr  
import numpy as np  
import torch  
import random  
  
from pytorch_lightning import seed_everything  
from annotator.util import resize_image, HWC3  
from annotator.canny import CannyDetector  
from cldm.model import create_model, load_state_dict  
from cldm.ddim_hacked import DDIMSampler  
  
  
apply_canny = CannyDetector()  
  
model = create_model('./models/cldm_v15.yaml').cpu()  
model.load_state_dict(load_state_dict('./models/control_sd15_canny.pth', location='cpu'))  
model = model.cpu()  
ddim_sampler = DDIMSampler(model)  
  
  
def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, low_threshold, high_threshold):  
    with torch.no_grad():  
        img = resize_image(HWC3(input_image), image_resolution)  
        H, W, C = img.shape  
  
        detected_map = apply_canny(img, low_threshold, high_threshold)  
        detected_map = HWC3(detected_map)  
  
        control = torch.from_numpy(detected_map.copy()).float().cpu() / 255.0  
        control = torch.stack([control for _ in range(num_samples)], dim=0)  
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()  
  
        if seed == -1:  
            seed = random.randint(0, 65535)  
        seed_everything(seed)  
  
        if config.save_memory:  
            model.low_vram_shift(is_diffusing=False)  
  
        cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}  
        un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}  
        shape = (4, H // 8, W // 8)  
  
        if config.save_memory:  
            model.low_vram_shift(is_diffusing=True)  
  
        model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13)  # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01  
        samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,  
                                                     shape, cond, verbose=False, eta=eta,  
                                                     unconditional_guidance_scale=scale,  
                                                     unconditional_conditioning=un_cond)  
  
        if config.save_memory:  
            model.low_vram_shift(is_diffusing=False)  
  
        x_samples = model.decode_first_stage(samples)  
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)  
  
        results = [x_samples[i] for i in range(num_samples)]  
    return [255 - detected_map] + results  
  
  
block = gr.Blocks().queue()  
with block:  
    with gr.Row():  
        gr.Markdown("## Control Stable Diffusion with Canny Edge Maps")  
    with gr.Row():  
        with gr.Column():  
            input_image = gr.Image(source='upload', type="numpy")  
            prompt = gr.Textbox(label="Prompt")  
            run_button = gr.Button(label="Run")  
            with gr.Accordion("Advanced options", open=False):  
                num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)  
                image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)  
                strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)  
                guess_mode = gr.Checkbox(label='Guess Mode', value=False)  
                low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1)  
                high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1)  
                ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)  
                scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)  
                seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)  
                eta = gr.Number(label="eta (DDIM)", value=0.0)  
                a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')  
                n_prompt = gr.Textbox(label="Negative Prompt",  
                                      value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')  
        with gr.Column():  
            result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')  
    ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, low_threshold, high_threshold]  
    run_button.click(fn=process, inputs=ips, outputs=[result_gallery])  
  
  
block.launch(server_name='0.0.0.0')

其他的模型,比如gradio_hed2image.py,它可以保留输入图像中的许多细节,适合图像的重新着色和样式化的场景:

还记得AnimeGANv2模型吗:神工鬼斧惟肖惟妙,M1 mac系统深度学习框架Pytorch的二次元动漫动画风格迁移滤镜AnimeGANv2+Ffmpeg(图片+视频)快速实践,之前还只能通过统一模型滤镜进行转化,现在只要修改引导词,我们就可以肆意地变化出不同的滤镜,人工智能技术的发展,就像发情的海,汹涌澎湃。

结语

“人类嘛时候会被人工智能替代呀?”

“就是现在!就在今天!”

就算是达芬奇还魂,齐白石再生,他们也会被现今的人工智能AI技术所震撼,纵横恣肆的笔墨,抑扬变化的形态,左右跌宕的心气,焕然飞动的神采!历史长河中这一刻,大千世界里这一处,让我们变得疯狂!

最后奉上修改后的基于Python3.10的Cpu训练版本的ControlNet,与众亲同飨:https://github.com/zcxey2911/ControlNet_py3.10_cpu_NoConda

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/374223.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

jdbc模板的基本使用

1.JdbcTemplate的开发步骤 <1>导入spring-jdbc和spring-tx坐标 <2>创建数据库表和实体 <3>创建JdbcTemplate对象 <4>执行数据库 2.JdbcTemplate快速入门 <1>导入坐标 <dependency><groupId>org.springframework</groupId><…

【Python学习笔记】第十七节 Python 异常处理

Python 异常在任何一种编程语言中&#xff0c;都会有异常处理机制&#xff0c;python也不例外&#xff0c;它提供了两个非常重要的功能来处理python程序在运行中出现的异常和错误。Python 异常处理异常的概念&#xff1a;在程序运行过程中&#xff0c;由于代码错误或者运行环境…

Java数据结构与算法——手撕LRULFU算法

LRU算法 力扣146&#xff1a;https://leetcode-cn.com/problems/lru-cache/ 讲解视频&#xff1a;https://www.bilibili.com/video/BV1Hy4y1B78T?p65&vd_source6f347f8ae76e7f507cf6d661537966e8 LRU是Least Recently Used的缩写&#xff0c;是一种常用的页面置换算法&…

Typora图床配置:Typora + PicGo + 阿里云OSS

文章目录一、前景提要二、相关链接三、搭建步骤1. 购买阿里云对象存储OSS2. 对象存储OSS&#xff1a;创建Bucket3. 阿里云&#xff1a;添加OSS访问用户及权限4. 安装Typora5. 配置PicGo方法一&#xff1a;使用PicGo-Core (Command line)方法二&#xff1a;使用PicGo(app)6. 最后…

C语言深度剖析:关键字

C语言深度剖析:关键字C语言深度剖析:关键字前言定义与声明&#xff08;补充内容&#xff09;最宏大的关键字-auto最快的关键字-register关键字static被冤枉的关键字-sizeof整型在内存中的存储原码、反码、补码大小端补充理解变量内容的存储和取出为什么都是补码整型取值范围关于…

多线程的初识和创建

✨个人主页&#xff1a;bit me&#x1f447; ✨当前专栏&#xff1a;Java EE初阶&#x1f447; ✨每日一语&#xff1a;知不足而奋进&#xff0c;望远山而前行。 目 录&#x1f4a4;一. 认识线程&#xff08;Thread&#xff09;&#x1f34e;1. 线程的引入&#x1f34f;2. 线程…

【计算机网络:自顶向下方法】Chapter4 网络层:数据平面

Chapter44.1 网络层概述4.1.1 网络层服务4.1.2 网络层的主要功能转发&#xff08;局部&#xff09;路由选择&#xff08;全局&#xff09;4.1.3 控制平面和数据平面传统方式SDN方式4.1.4 网络服务模型4.2 路由器组成4.2.1 路由器结构概况4.2.2 转发方式4.2.3 输入端口处理与基于…

什么是api应用程序接口?

API:应用程序接口(API:Application Program Interface) 应用程序接口是一组定义、程序及协议的集合&#xff0c;通过 API 接口实现计算机软件之间的相互通信。API 的一个主要功能是提供通用功能集。程序员通过调用 API 函数对应用程序进行开发&#xff0c;可以减轻编程任务。…

【华为OD机试模拟题】用 C++ 实现 - TLV 编码(2023.Q1)

最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 去重求和(2023.Q1) 文章目录 最近更新的博客使用说明TLV 编码题目输入输出描述示例一输入输出说明Code使用说明 参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,通过率才会高。 华为 OD 清单查看…

大数据技术之Hadoop

第1章 Hadoop概述1.1 Hadoop是什么1.2 Hadoop发展历史&#xff08;了解&#xff09;1.3 Hadoop三大发行版本&#xff08;了解&#xff09;Hadoop三大发行版本&#xff1a;Apache、Cloudera、Hortonworks。Apache版本最原始&#xff08;最基础&#xff09;的版本&#xff0c;对于…

模型类的编写有没有什么靠谱的优化方法?

模型类的编写需要私有属性&#xff0c;setter...getter...方法、toString方法 和构造函数。虽然这些内容不难&#xff0c;同时也都是通过IDEA工具生成的&#xff0c;但是过程还是必须得走一遍&#xff0c;那么对于模型类的编写有没有什么优化方法?可以通过Lombok来实现优化。L…

C语言--指针进阶2

目录前言函数指针函数指针数组指向函数指针数组的指针回调函数前言 本篇文章我们将继续学习指针进阶的有关内容 函数指针 我们依然用类比的方法1来理解函数指针这一全新的概念&#xff0c;如图1 我们用一段代码来验证一下&#xff1a; int Add(int x, int y) {return xy;…

idea报错idea start filed

今天遇到idea启动失败的问题 问题分析&#xff1a; address already in use&#xff1a;bind idea需要的端口被占用 解决 重启就行&#xff0c;重启会重新分配端口。 官方解决 查看给的网站地址&#xff0c;这里官方给出的原因&#xff08;访问好慢&#xff0c;搭梯子我才…

图节点嵌入相关算法学习笔记

引言 本篇笔记为coggle 2月打卡任务&#xff0c;正好也在学习cs224w&#xff0c;干脆就一起做了&#xff0c;以下是任务列表&#xff1a; 任务名称难度任务1&#xff1a;图属性与图构造低、1任务2&#xff1a;图查询与遍历低、2任务3&#xff1a;节点中心性与应用中、2任务4&…

Spark计算框架入门笔记

Spark是一个用于大规模数据处理的统一计算引擎 注意&#xff1a;Spark不仅仅可以做类似于MapReduce的离线数据计算&#xff0c;还可以做实时数据计算&#xff0c;并且它还可以实现类似于Hive的SQL计算&#xff0c;等等&#xff0c;所以说它是一个统一的计算引擎 既然说到了Spar…

js 拖动--动态改变div的宽高大小

index.html 如下&#xff1a;&#xff08;可以新建一个index.html文件直接复制&#xff0c;打开运行&#xff09; <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <meta http-equiv"X-UA-Compatible&qu…

Python tkinter -- 第18章 画布控件之窗口

18.2.22 create_window(position, **options) 可以在画布控件中放置其他tkinter控件。放置的方法就是使用窗口组件。一个窗口组件只能容纳一个控件。如果要放置多个控件&#xff0c;可以把这些控件作为Frame控件的子控件&#xff0c;将Frame控件放入窗口组件中&#xff0c;就可…

超简单 华为OD机试用Python实现 -【踢石头子,踢石子问题】(2023-Q1 新题)

华为OD机试题 华为OD机试300题大纲踢石头子,踢石子问题题目输入输出示例一输入输出Python 代码如下所示算法思路华为OD机试300题大纲 参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,通过率才会高。 华为 OD 清单查看地址:blog.csdn.net/hihell/categ…

ChatGPT似乎有的时候并不能搞懂Java的动态分派,你懂了吗?

目录 碎碎念 ChatGPT 中出现的问题 那么正确答案应该是什么呢&#xff1f; 分派的相关知识点总结&#xff1a; 分派是什么&#xff1f; 静态分派与动态分派&#xff1a; Java语言是静态多分派&#xff0c;动态单分派的&#xff1b; 静态分派&#xff1a;静态重载多分派…

追梦之旅【数据结构篇】——详解C语言实现二叉树

详解C语言实现二叉树~&#x1f60e;前言&#x1f64c;什么是二叉树&#xff1f;二叉树的性质总结&#xff1a;整体实现内容分析&#x1f49e;1.头文件的编写&#xff1a;&#x1f64c;2.功能文件的编写&#xff1a;&#x1f64c;1&#xff09;前序遍历的数值来创建树——递归函…