大数据技术之Hadoop

news2025/1/9 12:33:00

第1章 Hadoop概述

1.1 Hadoop是什么

1.2 Hadoop发展历史(了解)

1.3 Hadoop三大发行版本(了解)

Hadoop三大发行版本:Apache、Cloudera、Hortonworks。

Apache版本最原始(最基础)的版本,对于入门学习最好。2006

Cloudera内部集成了很多大数据框架,对应产品CDH。2008

Hortonworks文档较好,对应产品HDP。2011

Hortonworks现在已经被Cloudera公司收购,推出新的品牌CDP。

1)Apache Hadoop

官网地址:http://hadoop.apache.org

下载地址:https://hadoop.apache.org/releases.html

2)Cloudera Hadoop

官网地址:https://www.cloudera.com/downloads/cdh

下载地址:https://docs.cloudera.com/documentation/enterprise/6/release-notes/topics/rg_cdh_6_download.html

(1)2008年成立的Cloudera是最早将Hadoop商用的公司,为合作伙伴提供Hadoop的商用解决方案,主要是包括支持、咨询服务、培训。

(2)2009年Hadoop的创始人Doug Cutting也加盟Cloudera公司。Cloudera产品主要为CDH,Cloudera Manager,Cloudera Support

(3)CDH是Cloudera的Hadoop发行版,完全开源,比Apache Hadoop在兼容性,安全性,稳定性上有所增强。Cloudera的标价为每年每个节点10000美元

(4)Cloudera Manager是集群的软件分发及管理监控平台,可以在几个小时内部署好一个Hadoop集群,并对集群的节点及服务进行实时监控。

3)Hortonworks Hadoop

官网地址:https://hortonworks.com/products/data-center/hdp/

下载地址:https://hortonworks.com/downloads/#data-platform

(1)2011年成立的Hortonworks是雅虎与硅谷风投公司Benchmark Capital合资组建。

(2)公司成立之初就吸纳了大约25名至30名专门研究Hadoop的雅虎工程师,上述工程师均在2005年开始协助雅虎开发Hadoop,贡献了Hadoop80%的代码。

(3)Hortonworks的主打产品是Hortonworks Data Platform(HDP),也同样是100%开源的产品,HDP除常见的项目外还包括了Ambari,一款开源的安装和管理系统。

(4)2018年Hortonworks目前已经被Cloudera公司收购

1.4 Hadoop优势(4高)

1.5 Hadoop组成(面试重点)

1.5.1 HDFS架构概述

Hadoop Distributed File System,简称HDFS,是一个分布式文件系统。

1.5.2 YARN架构概述

Yet Another Resource Negotiator简称YARN ,另一种资源协调者,是Hadoop的资源管理器。

1.5.3 MapReduce架构概述

MapReduce将计算过程分为两个阶段:Map和Reduce

1)Map阶段并行处理输入数据

2)Reduce阶段对Map结果进行汇总

1.5.4 HDFS、YARN、MapReduce三者关系

1.6 大数据技术生态体系

图中涉及的技术名词解释如下:

1)Sqoop:Sqoop是一款开源的工具,主要用于在Hadoop、Hive与传统的数据库(MySQL)间进行数据的传递,可以将一个关系型数据库(例如:MySQL,Oracle 等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。

2)Flume:Flume是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;

3)Kafka:Kafka是一种高吞吐量的分布式发布订阅消息系统;

4)Spark:Spark是当前最流行的开源大数据内存计算框架。可以基于Hadoop上存储的大数据进行计算。

5)Flink:Flink是当前最流行的开源大数据内存计算框架。用于实时计算的场景较多。

6)Oozie:Oozie是一个管理Hadoop作业(job)的工作流程调度管理系统。

7)Hbase:HBase是一个分布式的、面向列的开源数据库。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。

8)Hive:Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。

9)ZooKeeper:它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、分布式同步、组服务等。

1.7 推荐系统框架图

第2章 Hadoop运行环境搭建(开发重点)

2.1 模板虚拟机环境准备

0)安装模板虚拟机,IP地址192.168.10.100、主机名称hadoop100、内存4G硬盘50G

1)hadoop100虚拟机配置要求如下(本文Linux系统全部以CentOS-7.5-x86-1804为例)

(1)使用yum安装需要虚拟机可以正常上网,yum安装前可以先测试下虚拟机联网情况

[root@hadoop100 ~]# ping www.baidu.com
PING www.baidu.com (14.215.177.39) 56(84) bytes of data.
64 bytes from 14.215.177.39 (14.215.177.39): icmp_seq=1 ttl=128 time=8.60 ms
64 bytes from 14.215.177.39 (14.215.177.39): icmp_seq=2 ttl=128 time=7.72 ms

(2)安装epel-release

注:Extra Packages for Enterprise Linux是为“红帽系”的操作系统提供额外的软件包,适用于RHEL、CentOS和Scientific Linux。相当于是一个软件仓库,大多数rpm包在官方 repository 中是找不到的)

[root@hadoop100 ~]# yum install -y epel-release

(3)注意:如果Linux安装的是最小系统版,还需要安装如下工具;如果安装的是Linux桌面标准版,不需要执行如下操作

  • net-tool:工具包集合,包含ifconfig等命令

[root@hadoop100 ~]# yum install -y net-tools

  • vim:编辑器

[root@hadoop100 ~]# yum install -y vim

2)关闭防火墙,关闭防火墙开机自启

[root@hadoop100 ~]# systemctl stop firewalld
[root@hadoop100 ~]# systemctl disable firewalld.service

注意:在企业开发时,通常单个服务器的防火墙时关闭的。公司整体对外会设置非常安全的防火墙

3)创建atguigu用户,并修改atguigu用户的密码

[root@hadoop100 ~]# useradd atguigu
[root@hadoop100 ~]# passwd atguigu

4)配置atguigu用户具有root权限,方便后期加sudo执行root权限的命令

[root@hadoop100 ~]# vim /etc/sudoers

修改/etc/sudoers文件,在%wheel这行下面添加一行,如下所示:

## Allow root to run any commands anywhere

root ALL=(ALL) ALL

## Allows people in group wheel to run all commands

%wheel ALL=(ALL) ALL

atguigu ALL=(ALL) NOPASSWD:ALL

注意:atguigu这一行不要直接放到root行下面,因为所有用户都属于wheel组,你先配置了atguigu具有免密功能,但是程序执行到%wheel行时,该功能又被覆盖回需要密码。所以atguigu要放到%wheel这行下面。

5)在/opt目录下创建文件夹,并修改所属主和所属组

(1)在/opt目录下创建module、software文件夹

[root@hadoop100 ~]# mkdir /opt/module

[root@hadoop100 ~]# mkdir /opt/software

(2)修改module、software文件夹的所有者和所属组均为atguigu用户

[root@hadoop100 ~]# chown atguigu:atguigu /opt/module

[root@hadoop100 ~]# chown atguigu:atguigu /opt/software

(3)查看module、software文件夹的所有者和所属组

[root@hadoop100 ~]# cd /opt/

[root@hadoop100 opt]# ll

总用量12

drwxr-xr-x. 2 atguigu atguigu 4096 5月 28 17:18 module

drwxr-xr-x. 2 root root 4096 9月 7 2017 rh

drwxr-xr-x. 2 atguigu atguigu 4096 5月 28 17:18 software

6)卸载虚拟机自带的JDK

注意:如果你的虚拟机是最小化安装不需要执行这一步。

[root@hadoop100 ~]# rpm -qa | grep -i java | xargs -n1 rpm -e --nodeps

  • rpm -qa:查询所安装的所有rpm软件包

  • grep -i:忽略大小写

  • xargs -n1:表示每次只传递一个参数

  • rpm -e –nodeps:强制卸载软件

7)重启虚拟机

[root@hadoop100 ~]# reboot

2.2 克隆虚拟机

1)利用模板机hadoop100,克隆三台虚拟机:hadoop102 hadoop103 hadoop104

注意:克隆时,要先关闭hadoop100

2)修改克隆机IP,以下以hadoop102举例说明

(1)修改克隆虚拟机的静态IP

[root@hadoop100 ~]# vim /etc/sysconfig/network-scripts/ifcfg-ens33

改成

    DEVICE=ens33
    TYPE=Ethernet
    ONBOOT=yes
    BOOTPROTO=static
    NAME="ens33"
    IPADDR=192.168.10.102
    PREFIX=24
    GATEWAY=192.168.10.2
    DNS1=192.168.10.2

(2)查看Linux虚拟机的虚拟网络编辑器,编辑->虚拟网络编辑器->VMnet8

(3)查看Windows系统适配器VMware Network Adapter VMnet8的IP地址

(4)保证Linux系统ifcfg-ens33文件中IP地址、虚拟网络编辑器地址和Windows系统VM8网络IP地址相同。

3)修改克隆机主机名,以下以hadoop102举例说明

(1)修改主机名称

[root@hadoop100 ~]# vim /etc/hostname

hadoop102

(2)配置Linux克隆机主机名称映射hosts文件,打开/etc/hosts

[root@hadoop100 ~]# vim /etc/hosts

添加如下内容

        192.168.10.100 hadoop100
        192.168.10.101 hadoop101
        192.168.10.102 hadoop102
        192.168.10.103 hadoop103
        192.168.10.104 hadoop104
        192.168.10.105 hadoop105
        192.168.10.106 hadoop106
        192.168.10.107 hadoop107
        192.168.10.108 hadoop108

4)重启克隆机hadoop102

[root@hadoop100 ~]# reboot

5)修改windows的主机映射文件(hosts文件)

(1)如果操作系统是window7,可以直接修改

(a)进入C:\Windows\System32\drivers\etc路径

(b)打开hosts文件并添加如下内容,然后保存

        192.168.10.100 hadoop100
        192.168.10.101 hadoop101
        192.168.10.102 hadoop102
        192.168.10.103 hadoop103
        192.168.10.104 hadoop104
        192.168.10.105 hadoop105
        192.168.10.106 hadoop106
        192.168.10.107 hadoop107
        192.168.10.108 hadoop108

(2)如果操作系统是window10,先拷贝出来,修改保存以后,再覆盖即可

(a)进入C:\Windows\System32\drivers\etc路径

(b)拷贝hosts文件到桌面

(c)打开桌面hosts文件并添加如下内容

        192.168.10.100 hadoop100
        192.168.10.101 hadoop101
        192.168.10.102 hadoop102
        192.168.10.103 hadoop103
        192.168.10.104 hadoop104
        192.168.10.105 hadoop105
        192.168.10.106 hadoop106
        192.168.10.107 hadoop107
        192.168.10.108 hadoop108

(d)将桌面hosts文件覆盖C:\Windows\System32\drivers\etc路径hosts文件

2.3 在hadoop102安装JDK

1)卸载现有JDK

注意:安装JDK前,一定确保提前删除了虚拟机自带的JDK。详细步骤见问文档3.1节中卸载JDK步骤。

2)用XShell传输工具将JDK导入到opt目录下面的software文件夹下面

3)在Linux系统下的opt目录中查看软件包是否导入成功

[atguigu@hadoop102 ~]$ ls /opt/software/

看到如下结果:

jdk-8u212-linux-x64.tar.gz

4)解压JDK到/opt/module目录下

[atguigu@hadoop102 software]$ tar -zxvf jdk-8u212-linux-x64.tar.gz -C /opt/module/

5)配置JDK环境变量

(1)新建/etc/profile.d/my_env.sh文件

[atguigu@hadoop102 ~]$ sudo vim /etc/profile.d/my_env.sh

添加如下内容

        #JAVA_HOME
        export JAVA_HOME=/opt/module/jdk1.8.0_212
        export PATH=$PATH:$JAVA_HOME/bin

(2)保存后退出

:wq

(3)source一下/etc/profile文件,让新的环境变量PATH生效

[atguigu@hadoop102 ~]$ source /etc/profile

6)测试JDK是否安装成功

[atguigu@hadoop102 ~]$ java -version

如果能看到以下结果,则代表Java安装成功。

java version "1.8.0_212"

注意:重启(如果java -version可以用就不用重启)

[atguigu@hadoop102 ~]$ sudo reboot

2.4 在hadoop102安装Hadoop

Hadoop下载地址:https://archive.apache.org/dist/hadoop/common/hadoop-3.1.3/

1)用XShell文件传输工具将hadoop-3.1.3.tar.gz导入到opt目录下面的software文件夹下面

2)进入到Hadoop安装包路径下

[atguigu@hadoop102 ~]$ cd /opt/software/

3)解压安装文件到/opt/module下面

[atguigu@hadoop102 software]$ tar -zxvf hadoop-3.1.3.tar.gz -C /opt/module/

4)查看是否解压成功

[atguigu@hadoop102 software]$ ls /opt/module/

hadoop-3.1.3

5)将Hadoop添加到环境变量

(1)获取Hadoop安装路径

[atguigu@hadoop102 hadoop-3.1.3]$ pwd

/opt/module/hadoop-3.1.3

(2)打开/etc/profile.d/my_env.sh文件

[atguigu@hadoop102 hadoop-3.1.3]$ sudo vim /etc/profile.d/my_env.sh

  • 在my_env.sh文件末尾添加如下内容:(shift+g)

        #HADOOP_HOME
        export HADOOP_HOME=/opt/module/hadoop-3.1.3
        export PATH=$PATH:$HADOOP_HOME/bin
        export PATH=$PATH:$HADOOP_HOME/sbin
  • 保存并退出::wq

(3)让修改后的文件生效

[atguigu@hadoop102 hadoop-3.1.3]$ source /etc/profile

6)测试是否安装成功

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop version

Hadoop 3.1.3

7)重启(如果Hadoop命令不能用再重启虚拟机)

[atguigu@hadoop102 hadoop-3.1.3]$ sudo reboot

2.5 Hadoop目录结构

1)查看Hadoop目录结构

        [atguigu@hadoop102 hadoop-3.1.3]$ ll
        总用量52
        drwxr-xr-x. 2 atguigu atguigu  4096 5月  22 2017 bin
        drwxr-xr-x. 3 atguigu atguigu  4096 5月  22 2017 etc
        drwxr-xr-x. 2 atguigu atguigu  4096 5月  22 2017 include
        drwxr-xr-x. 3 atguigu atguigu  4096 5月  22 2017 lib
        drwxr-xr-x. 2 atguigu atguigu  4096 5月  22 2017 libexec
        -rw-r--r--. 1 atguigu atguigu 15429 5月  22 2017 LICENSE.txt
        -rw-r--r--. 1 atguigu atguigu   101 5月  22 2017 NOTICE.txt
        -rw-r--r--. 1 atguigu atguigu  1366 5月  22 2017 README.txt
        drwxr-xr-x. 2 atguigu atguigu  4096 5月  22 2017 sbin
        drwxr-xr-x. 4 atguigu atguigu  4096 5月  22 2017 share

2)重要目录

(1)bin目录:存放对Hadoop相关服务(hdfs,yarn,mapred)进行操作的脚本

(2)etc目录:Hadoop的配置文件目录,存放Hadoop的配置文件

(3)lib目录:存放Hadoop的本地库(对数据进行压缩解压缩功能)

(4)sbin目录:存放启动或停止Hadoop相关服务的脚本

(5)share目录:存放Hadoop的依赖jar包、文档、和官方案例

第3章 Hadoop运行模式

1)Hadoop官方网站:http://hadoop.apache.org/

2)Hadoop运行模式包括:本地模式伪分布式模式以及完全分布式模式

  • 本地模式:单机运行,只是用来演示一下官方案例。生产环境不用。

  • 伪分布式模式:也是单机运行,但是具备Hadoop集群的所有功能,一台服务器模拟一个分布式的环境。个别缺钱的公司用来测试,生产环境不用。

  • 完全分布式模式:多台服务器组成分布式环境。生产环境使用。

3.1 本地运行模式(官方WordCount)

1)创建在hadoop-3.1.3文件下面创建一个wcinput文件夹

[atguigu@hadoop102 hadoop-3.1.3]$ mkdir wcinput

2)在wcinput文件下创建一个word.txt文件

[atguigu@hadoop102 hadoop-3.1.3]$ cd wcinput

3)编辑word.txt文件

[atguigu@hadoop102 wcinput]$ vim word.txt

  • 在文件中输入如下内容

hadoop yarn

hadoop mapreduce

atguigu

atguigu

  • 保存退出::wq

4)回到Hadoop目录/opt/module/hadoop-3.1.3

5)执行程序

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount wcinput(输入路径) wcoutput(输出路径)

6)查看结果

[atguigu@hadoop102 hadoop-3.1.3]$ cat wcoutput/part-r-00000

看到如下结果:

atguigu 2

hadoop 2

mapreduce 1

yarn 1

3.2 完全分布式运行模式(开发重点)

分析:

1)准备3台客户机(关闭防火墙、静态IP、主机名称)

2)安装JDK

3)配置环境变量

4)安装Hadoop

5)配置环境变量

6)配置集群

7)单点启动

8)配置ssh

9)群起并测试集群

3.2.1 虚拟机准备

详见2.1、2.2两节。

3.2.2 编写集群分发脚本xsync

1)scp(secure copy)安全拷贝

(1)scp定义

scp可以实现服务器与服务器之间的数据拷贝。(from server1 to server2),(简单说就是把一台虚拟机的内容服务到其他的虚拟机上)

(2)基本语法

scp -r $pdir/$fname $user@$host:$pdir/$fname

命令 递归 要拷贝的文件路径/名称 目的地用户@主机:目的地路径/名称

(3)案例实操

  • 前提:在hadoop102、hadoop103、hadoop104都已经创建好的/opt/module、 /opt/software两个目录,并且已经把这两个目录修改为atguigu:atguigu

[atguigu@hadoop102 ~]$ sudo chown atguigu:atguigu -R /opt/module

  • 在hadoop102上,将hadoop102中/opt/module/jdk1.8.0_212目录拷贝到hadoop103上。

[atguigu@hadoop102 ~]$ scp -r /opt/module/jdk1.8.0_212 atguigu@hadoop103:/opt/module
  • 在hadoop103上,将hadoop102中/opt/module/hadoop-3.1.3目录拷贝到hadoop103上。rm -rf jdk1.8.0_212/

[atguigu@hadoop103 ~]$ scp -r atguigu@hadoop102:/opt/module/hadoop-3.1.3 /opt/module/
  • 在hadoop103上操作,将hadoop102中/opt/module目录下所有目录拷贝到hadoop104上。

[atguigu@hadoop103 opt]$ scp -r atguigu@hadoop102:/opt/module/* atguigu@hadoop104:/opt/module

2)rsync远程同步工具

rsync主要用于备份和镜像。具有速度快、避免复制相同内容和支持符号链接的优点。

rsync和scp区别:用rsync做文件的复制要比scp的速度快,rsync只对差异文件做更新。scp是把所有文件都复制过去。(也就是两个都是用了复制的,rsync效率更高,因为是差异复制,这两个命令都要求目标路径不存在,不然会报错

(1)基本语法

rsync -av $pdir/$fname $user@$host:$pdir/$fname

命令 选项参数 要拷贝的文件路径/名称 目的地用户@主机:目的地路径/名称

选项参数说明(注意这里-av是组合在一起的,不能拆开用)

选项

功能

-a

归档拷贝

-v

显示复制过程

(2)案例实操

(a)删除hadoop103中/opt/module/hadoop-3.1.3/wcinput这个文件

[atguigu@hadoop103 hadoop-3.1.3]$ rm -rf wcinput/

(b)同步hadoop102中的/opt/module/hadoop-3.1.3到hadoop103

[atguigu@hadoop102 module]$ rsync -av hadoop-3.1.3/ atguigu@hadoop103:/opt/module/hadoop-3.1.3/

3)xsync集群分发脚本

(1)需求:循环复制文件到所有节点的相同目录下(专门用了复制文件的,可以把文件从一个虚拟机复制到多台虚拟机的相同目录下,通常在多个虚拟机的情况下每一个虚拟机都被称为节点

(2)需求分析:

(a)rsync命令原始拷贝(写这个脚本的具体需求,这个操作不用写,只是根据这个来写下面的脚本)

rsync -av /opt/module root@hadoop103:/opt/

(b)期望脚本:

xsync要同步的文件名称(例如xsync /home/saodai/bin)

(c)期望脚本在任何路径都能使用(脚本放在声明了全局环境变量的路径)

[root@hadoop102 ~]$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/opt/module/jdk1.8.0_212/bin:/opt/module/hadoop-3.1.3/bin:/opt/module/hadoop-3.1.3/sbin:/root/bin:/opt/module/jdk1.8.0_212/bin:/opt/module/hadoop-3.1.3/bin:/opt/module/hadoop-3.1.3/sbin:/opt/module/jdk1.8.0_212/bin:/opt/module/hadoop-3.1.3/bin:/opt/module/hadoop-3.1.3/sbin

这里由于我没有使用echo $PATH命令后全局环境变量没有/home/saodai/bin,所以我把脚本都放在了/usr/local/bin里面

(3)脚本实现

(a)在/home/atguigu/bin目录下创建xsync文件(也就是一个脚本)

[saodai@hadoop102 opt]$ cd /home/saodai/bin

[saodai@hadoop102 bin]$ vim xsync

在xsync文件中编写如下代码(看完这个代码可以发现xsync底层还是rsync,这个脚本的作用就是把当前节点Hadoop102的文件同步到Hadoop103、Hadoop104上

#!/bin/bash
 
#1. 判断参数个数 $#是获取输入的参数个数
if [ $# -lt 1 ]
then
    echo Not Enough Arguement!
    exit;
fi
 
#2. 遍历集群所有机器
for host in hadoop102 hadoop103 hadoop104
do
    echo ====================  $host  ====================
    #3. 遍历所有目录,挨个发送 $@是获取所有的值,可以理解为一个host数组
    for file in $@
    do
        #4. -e是判断文件是否存在
        if [ -e $file ]
            then
                #5. 获取父目录 ;就是指的这是两句合在一起的,先执行前面这句
                pdir=$(cd -P $(dirname $file); pwd)
                #6. basename是获取当前文件的名称
                fname=$(basename $file)
                #7.ssh是连接其他虚拟机的命令,然后强制创建目录(-p是强制的意思)
                ssh $host "mkdir -p $pdir"
                #8.使用rsync复制到其他节点
                rsync -av $pdir/$fname $host:$pdir
            else
                echo $file does not exists!
        fi
    done
done

(b)修改脚本 xsync 具有执行权限

[saodai@hadoop102 bin]$ chmod +x xsync

(c)测试脚本(编写脚本并且配置环境变量后就可以把这个脚本当命令来用,后面接的路径就是要同步到其他节点的文件的路径

[saodai@hadoop102 ~]$ xsync /root/bin

(d)将脚本复制到/bin中,以便全局调用

[saodai@hadoop102 bin]$ cp xsync /root/bin/

(e)同步环境变量配置(例如之前的在hadoop102配置的jdk和hadoop的环境变量同步到hadoop102、hadoop103上面去)

[root@hadoop102 ~]$xsync /etc/profile.d/my_env.sh

注意:如果用了sudo,那么xsync一定要给它的路径补全。

让环境变量生效(这里我没有这一步,应该是直接用的root权限)

[saodai@hadoop103 bin]$ source /etc/profile

[saodai@hadoop104 opt]$ source /etc/profile

3.2.3 SSH无密登录配置

1)配置ssh(只有执行了ssh后在home路径下找到.ssh【要用ls -al查看】-al是指的查看隐藏文件)

(1)基本语法

ssh另一台电脑的IP地址

(2)ssh连接时出现Host key verification failed的解决方法

[atguigu@hadoop102 ~]$ ssh hadoop103

  • 如果出现如下内容

Are you sure you want to continue connecting (yes/no)?

  • 输入yes,并回车

(3)退回到hadoop102

[atguigu@hadoop103 ~]$ exit

2)无密钥配置

(1)免密登录原理

(2)生成公钥和私钥

[atguigu@hadoop102 .ssh]$ pwd
/home/atguigu/.ssh

[atguigu@hadoop102 .ssh]$ ssh-keygen -t rsa

然后敲(三个回车),就会生成两个文件id_rsa(私钥)、id_rsa.pub(公钥),(要到这个.ssh路径下才可以执行这两个命令)

(3)将公钥拷贝到要免密登录的目标机器上

[atguigu@hadoop102 .ssh]$ ssh-copy-id hadoop102

[atguigu@hadoop102 .ssh]$ ssh-copy-id hadoop103

[atguigu@hadoop102 .ssh]$ ssh-copy-id hadoop104

注意:

还需要在hadoop103上采用atguigu账号配置一下无密登录到hadoop102、hadoop103、hadoop104服务器上。

还需要在hadoop104上采用atguigu账号配置一下无密登录到hadoop102、hadoop103、hadoop104服务器上。

还需要在hadoop102上采用root账号,配置一下无密登录到hadoop102、hadoop103、hadoop104;

(4)测试连接其他虚拟机

[saodai@hadoop103 ~]$ ssh hadoop102
Last login: Sat Feb 25 12:01:02 2023 from hadoop104
[saodai@hadoop102 ~]$ ssh hadoop104
Last login: Sat Feb 25 12:01:40 2023 from hadoop102
[saodai@hadoop104 ~]$ 
  1. .ssh文件夹下(~/.ssh)的文件功能解释

known_hosts

记录ssh访问过计算机的公钥(public key)

id_rsa

生成的私钥

id_rsa.pub

生成的公钥

authorized_keys

存放授权过的无密登录服务器公钥

3.2.4 集群配置

1)集群部署规划

注意:

  • NameNode和SecondaryNameNode不要安装在同一台服务器

  • ResourceManager也很消耗内存,不要和NameNode、SecondaryNameNode配置在同一台机器上。

hadoop102

hadoop103

hadoop104

HDFS

NameNode

DataNode

DataNode

SecondaryNameNode

DataNode

YARN

NodeManager

ResourceManager

NodeManager

NodeManager

2)配置文件说明

Hadoop配置文件分两类:默认配置文件和自定义配置文件,只有用户想修改某一默认配置值时,才需要修改自定义配置文件,更改相应属性值。(这四个核心配置文件在hadoop安装目录下的/etc/hadoop目录)

(1)默认配置文件:

要获取的默认文件

文件存放在Hadoop的jar包中的位置

[core-default.xml]

hadoop-common-3.1.3.jar/core-default.xml

[hdfs-default.xml]

hadoop-hdfs-3.1.3.jar/hdfs-default.xml

[yarn-default.xml]

hadoop-yarn-common-3.1.3.jar/yarn-default.xml

[mapred-default.xml]

hadoop-mapreduce-client-core-3.1.3.jar/mapred-default.xml

(2)自定义配置文件:

core-site.xml、hdfs-site.xml、yarn-site.xml、mapred-site.xml四个配置文件存放在$HADOOP_HOME/etc/hadoop这个路径上,用户可以根据项目需求重新进行修改配置。

3)配置集群

(1)核心配置文件(配置core-site.xml)

[atguigu@hadoop102 ~]$ cd $HADOOP_HOME/etc/hadoop

[atguigu@hadoop102 hadoop]$ vim core-site.xml

文件内容如下:

        <?xml version="1.0" encoding="UTF-8"?>
        <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
         
        <configuration>
            <!-- 指定NameNode的地址 -->
            <property>
                <name>fs.defaultFS</name>
                <value>hdfs://hadoop102:8020</value>
            </property>
         
            <!-- 指定hadoop数据的存储目录 -->
            <property>
                <name>hadoop.tmp.dir</name>
                <value>/opt/module/hadoop-3.1.3/data</value>
            </property>
         
            <!-- 配置HDFS网页登录使用的静态用户为saodai -->
            <property>
                <name>hadoop.http.staticuser.user</name>
                <value>saodai</value>
            </property>
        </configuration>

这里注意在复制的时候要先从一般模式切换到写入模式再复制进去,如果是在一般模式上写有时候会丢失内容,这里解释一下上面的hadoop.http.staticuser.user配置的含义,不配这个的话,你在hadoop的hdfs提供的web页面是没有权限去删除里面的文件的,然后这个配置就是赋予你这个saodai角色的权限,这样就可以在web页面删除文件了

(2)HDFS配置文件(配置hdfs-site.xml)

[atguigu@hadoop102 hadoop]$ vim hdfs-site.xml

文件内容如下:

        <?xml version="1.0" encoding="UTF-8"?>
        <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
         
        <configuration>
            <!-- nn web端访问地址-->
            <property>
                <name>dfs.namenode.http-address</name>
                <value>hadoop102:9870</value>
            </property>
            <!-- 2nn web端访问地址-->
            <property>
                <name>dfs.namenode.secondary.http-address</name>
                <value>hadoop104:9868</value>
            </property>
        </configuration>

(3)YARN配置文件(配置yarn-site.xml)

[atguigu@hadoop102 hadoop]$ vim yarn-site.xml

文件内容如下:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
 
<configuration>
    <!-- 指定MR走shuffle协议 -->
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
 
    <!-- 指定ResourceManager的地址-->
    <property>
        <name>yarn.resourcemanager.hostname</name>
        <value>hadoop103</value>
    </property>
 
    <!-- 环境变量的继承 -->
    <property>
        <name>yarn.nodemanager.env-whitelist</name>
        <value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME
        </value>
    </property>
</configuration>

(4)MapReduce配置文件(配置mapred-site.xml)

[atguigu@hadoop102 hadoop]$ vim mapred-site.xml

文件内容如下:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
 
<configuration>
    <!-- 指定MapReduce程序运行在Yarn上 -->
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
</configuration>

4)在集群上分发配置好的Hadoop配置文件(这里我是切换到root账号来同步的)

[atguigu@hadoop102 hadoop]$ xsync /opt/module/hadoop-3.1.3/etc/hadoop/

5)去103和104上查看文件分发情况

[atguigu@hadoop103 ~]$ cat /opt/module/hadoop-3.1.3/etc/hadoop/core-site.xml

[atguigu@hadoop104 ~]$ cat /opt/module/hadoop-3.1.3/etc/hadoop/core-site.xml

3.2.5 群起集群

1)配置workers

[atguigu@hadoop102 hadoop]$ vim /opt/module/hadoop-3.1.3/etc/hadoop/workers

在该文件中增加如下内容:

hadoop102
hadoop103
hadoop104

注意:该文件中添加的内容结尾不允许有空格,文件中不允许有空行。

同步所有节点配置文件

[atguigu@hadoop102 hadoop]$ xsync /opt/module/hadoop-3.1.3/etc

2)启动集群

(1)初始化

如果集群是第一次启动,需要在hadoop102节点格式化NameNode

(注意:格式化NameNode,会产生新的集群id,导致NameNode和DataNode的集群id不一致,集群找不到已往数据。如果集群在运行过程中报错,需要重新格式化NameNode的话,一定要先停止namenode和datanode进程,并且要删除所有机器的data和logs目录,然后再进行格式化)

[atguigu@hadoop102 hadoop-3.1.3]$ hdfs namenode -format

(2)启动HDFS

[atguigu@hadoop102 hadoop-3.1.3]$ sbin/start-dfs.sh

(3)在配置了ResourceManager的节点启动YARN(注意这个命令是在hadoop103上面执行)

[atguigu@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh

(4)Web端查看HDFS的NameNode

(a)浏览器中输入:http://hadoop102:9870

(b)查看HDFS上存储的数据信息

(5)Web端查看YARN的ResourceManager

(a)浏览器中输入:http://hadoop103:8088

(b)查看YARN上运行的Job信息

3)集群如果缺少namenode、datanode等等其他的节点,没有启动起来的解决办法

1、首先进入到hadoop的sbin目录下来停止所有的服务

(注意:格式化NameNode会产生新的NameNode,然后NameNode的id会变,导致NameNode和DataNode的集群id不一致,集群找不到已往数据。如果集群在运行过程中报错,需要重新格式化NameNode的话,一定要先停止namenode和datanode进程,并且要删除所有机器的data和logs目录,然后再进行格式化)

2、删除每一个节点的data和logs(注意是每一个节点)

3、格式化namenode节点

4、重新启动hdfs和yarn节点

5、所有节点运行情况

4)集群基本测试

(1)上传文件到集群

  • 上传小文件

[atguigu@hadoop102 ~]$ hadoop fs -mkdir /input

[atguigu@hadoop102 ~]$ hadoop fs -put $HADOOP_HOME/wcinput/word.txt /input

  • 上传大文件

[atguigu@hadoop102 ~]$ hadoop fs -put /opt/software/jdk-8u212-linux-x64.tar.gz /

(2)上传文件后查看文件存放在什么位置

  • 查看HDFS文件存储路径

[atguigu@hadoop102 subdir0]$ pwd

/opt/module/hadoop-3.1.3/data/dfs/data/current/BP-1436128598-192.168.10.102-1610603650062/current/finalized/subdir0/subdir0

  • 查看HDFS在磁盘存储文件内容

        [atguigu@hadoop102 subdir0]$ cat blk_1073741825
        hadoop yarn
        hadoop mapreduce 
        atguigu
        atguigu

(3)拼接

cat blk_1073741836>>tmp.tar.gz和cat blk_1073741837>>tmp.tar.gz是把这两个拼接成一个jdk压缩包,然后解压发现就是上传的jdk压缩包,所以可以确定hdfs实际上内容存储的位置就是在这里。这里为什么会把jdk的压缩包分为两部分呢?原因就是在hadoop里存储的容量是128MB为一个块,然后jdk的压缩包有180MB,所以一个块存不下,需要两个块,注意块的序号是从0开始的

-rw-rw-r--. 1 atguigu atguigu 134217728 5月  23 16:01 blk_1073741836
-rw-rw-r--. 1 atguigu atguigu   1048583 5月  23 16:01 blk_1073741836_1012.meta
-rw-rw-r--. 1 atguigu atguigu  63439959 5月  23 16:01 blk_1073741837
-rw-rw-r--. 1 atguigu atguigu    495635 5月  23 16:01 blk_1073741837_1013.meta
[atguigu@hadoop102 subdir0]$ cat blk_1073741836>>tmp.tar.gz
[atguigu@hadoop102 subdir0]$ cat blk_1073741837>>tmp.tar.gz
[atguigu@hadoop102 subdir0]$ tar -zxvf tmp.tar.gz

(4)下载

[atguigu@hadoop104 software]$ hadoop fs -get /jdk-8u212-linux-x64.tar.gz ./

(5)执行wordcount程序

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /input /output

3.2.6 配置历史服务器

为了查看程序的历史运行情况,需要配置一下历史服务器。具体配置步骤如下:

1)配置mapred-site.xml(先执行cd $HADOOP_HOME/etc/hadoop)

[atguigu@hadoop102 hadoop]$ vim mapred-site.xml

在该文件里面增加如下配置。

        <!-- 历史服务器端地址 -->
        <property>
            <name>mapreduce.jobhistory.address</name>
            <value>hadoop102:10020</value>
        </property>
         
        <!-- 历史服务器web端地址 -->
        <property>
            <name>mapreduce.jobhistory.webapp.address</name>
            <value>hadoop102:19888</value>
        </property>

2)分发配置

[atguigu@hadoop102 hadoop]$ xsync $HADOOP_HOME/etc/hadoop/mapred-site.xml

3)在hadoop102启动历史服务器(如果启动了yarn就需要先停止然后再启动,因为配置文件改了

[atguigu@hadoop102 hadoop]$ mapred --daemon start historyserver

4)查看历史服务器是否启动

[atguigu@hadoop102 hadoop]$ jps

5)查看JobHistory

http://hadoop102:19888/jobhistory

3.2.7 配置日志的聚集

日志聚集概念:应用运行完成以后,将程序运行日志信息上传到HDFS系统上。

日志聚集功能好处:可以方便的查看到程序运行详情,方便开发调试。

注意:开启日志聚集功能,需要重新启动NodeManager 、ResourceManager和HistoryServer。

开启日志聚集功能具体步骤如下:

1)配置yarn-site.xml

[atguigu@hadoop102 hadoop]$ vim yarn-site.xml

在该文件里面增加如下配置。

        <!-- 开启日志聚集功能-->
        <property>
            <name>yarn.log-aggregation-enable</name>
            <value>true</value>
        </property>
        <!-- 设置日志聚集服务器地址-->
        <property>  
            <name>yarn.log.server.url</name>  
            <value>http://hadoop102:19888/jobhistory/logs</value>
        </property>
        <!-- 设置日志保留时间为7天 -->
        <property>
            <name>yarn.log-aggregation.retain-seconds</name>
            <value>604800</value>
        </property>

2)分发配置

[atguigu@hadoop102 hadoop]$ xsync $HADOOP_HOME/etc/hadoop/yarn-site.xml

3)关闭NodeManager 、ResourceManager和HistoryServer

[atguigu@hadoop103 hadoop-3.1.3]$ sbin/stop-yarn.sh

//停止历史服务器

[atguigu@hadoop103 hadoop-3.1.3]$ mapred --daemon stop historyserver

4)启动NodeManager 、ResourceManage和HistoryServer

[atguigu@hadoop103 ~]$ start-yarn.sh

[atguigu@hadoop102 ~]$ mapred --daemon start historyserver

5)删除HDFS上已经存在的输出文件

[atguigu@hadoop102 ~]$ hadoop fs -rm -r /output

6)执行WordCount程序

[atguigu@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /input /output

7)查看日志

(1)历史服务器地址

http://hadoop102:19888/jobhistory

(2)历史任务列表

(3)查看任务运行日志

(4)运行日志详情

3.2.8 集群启动/停止方式总结

1)各个模块分开启动/停止(配置ssh是前提)常用

(1)整体启动/停止HDFS

start-dfs.sh/stop-dfs.sh

(2)整体启动/停止YARN

start-yarn.sh/stop-yarn.sh

2)各个服务组件逐一启动/停止

(1)分别启动/停止HDFS组件

hdfs --daemon start/stop namenode/datanode/secondarynamenode

(2)启动/停止YARN

yarn --daemon start/stop resourcemanager/nodemanager

3.2.9 编写Hadoop集群常用脚本

1)Hadoop集群启停脚本(包含HDFS,Yarn,Historyserver):myhadoop.sh

[atguigu@hadoop102 ~]$ cd /usr/local/bin(这里由于我没有使用echo $PATH命令后全局环境变量没有/home/saodai/bin,所以我把脚本都放在了/usr/local/bin里面)

[atguigu@hadoop102 bin]$ vim myhadoop.sh

  • 输入如下内容

#!/bin/bash
 
if [ $# -lt 1 ]
then
    echo "No Args Input..."
    exit ;
fi
 
case $1 in
"start")
        echo " =================== 启动 hadoop集群 ==================="
 
        echo " --------------- 启动 hdfs ---------------"
        ssh hadoop102 "/opt/module/hadoop-3.1.3/sbin/start-dfs.sh"
        echo " --------------- 启动 yarn ---------------"
        ssh hadoop103 "/opt/module/hadoop-3.1.3/sbin/start-yarn.sh"
        echo " --------------- 启动 historyserver ---------------"
        ssh hadoop102 "/opt/module/hadoop-3.1.3/bin/mapred --daemon start historyserver"
;;
"stop")
        echo " =================== 关闭 hadoop集群 ==================="
 
        echo " --------------- 关闭 historyserver ---------------"
        ssh hadoop102 "/opt/module/hadoop-3.1.3/bin/mapred --daemon stop historyserver"
        echo " --------------- 关闭 yarn ---------------"
        ssh hadoop103 "/opt/module/hadoop-3.1.3/sbin/stop-yarn.sh"
        echo " --------------- 关闭 hdfs ---------------"
        ssh hadoop102 "/opt/module/hadoop-3.1.3/sbin/stop-dfs.sh"
;;
*)
    echo "Input Args Error..."
;;
esac
  • 保存后退出,然后赋予脚本执行权限

[atguigu@hadoop102 bin]$ chmod +x myhadoop.sh

2)查看三台服务器Java进程脚本:jpsall

[saodai@hadoop102 ~]$ cd /usr/local/bin

[saodai@hadoop102 bin]$ vim jpsall

  • 输入如下内容

#!/bin/bash
 
for host in hadoop102 hadoop103 hadoop104
do
        echo =============== $host ===============
        ssh $host jps 
done
  • 保存后退出,然后赋予脚本执行权限

[saodai@hadoop102 bin]$ chmod +x jpsall

3)分发/usr/local/bin目录,保证自定义脚本在三台机器上都可以使用

[saodai@hadoop102 ~]$ xsync /usr/local/bin

3.2.10 常用端口号说明

端口名称

Hadoop2.x

Hadoop3.x

NameNode内部通信端口

8020 / 9000

8020 / 9000/9820

NameNode HTTP UI(对外暴露的给用户使用的web页面的端口号)

50070

9870

MapReduce查看执行任务端口

8088

8088

历史服务器通信端口

19888

19888

3.2.11 集群时间同步

如果服务器在公网环境(能连接外网),可以不采用集群时间同步,因为服务器会定期和公网时间进行校准;

如果服务器在内网环境,必须要配置集群时间同步,否则时间久了,会产生时间偏差,导致集群执行任务时间不同步。

1)需求

找一个机器,作为时间服务器,所有的机器与这台集群时间进行定时的同步,生产环境根据任务对时间的准确程度要求周期同步。测试环境为了尽快看到效果,采用1分钟同步一次。

2)时间服务器配置(必须root用户)

(1)查看所有节点ntpd服务状态和开机自启动状态

[atguigu@hadoop102 ~]$ sudo systemctl status ntpd

[atguigu@hadoop102 ~]$ sudo systemctl start ntpd

[atguigu@hadoop102 ~]$ sudo systemctl is-enabled ntpd

(2)修改hadoop102的ntp.conf配置文件

[atguigu@hadoop102 ~]$ sudo vim /etc/ntp.conf

修改内容如下

(a)修改1(授权192.168.10.0-192.168.10.255网段上的所有机器可以从这台机器上查询和同步时间)

#restrict 192.168.10.0 mask 255.255.255.0 nomodify notrap

为restrict 192.168.10.0 mask 255.255.255.0 nomodify notrap

(b)修改2(集群在局域网中,不使用其他互联网上的时间)

        server 0.centos.pool.ntp.org iburst
        server 1.centos.pool.ntp.org iburst
        server 2.centos.pool.ntp.org iburst
        server 3.centos.pool.ntp.org iburst
    为
        #server 0.centos.pool.ntp.org iburst
        #server 1.centos.pool.ntp.org iburst
        #server 2.centos.pool.ntp.org iburst
        #server 3.centos.pool.ntp.org iburst

(c)添加3(当该节点丢失网络连接,依然可以采用本地时间作为时间服务器为集群中的其他节点提供时间同步)

server 127.127.1.0

fudge 127.127.1.0 stratum 10

(3)修改hadoop102的/etc/sysconfig/ntpd 文件

[atguigu@hadoop102 ~]$ sudo vim /etc/sysconfig/ntpd

增加内容如下(让硬件时间与系统时间一起同步)

SYNC_HWCLOCK=yes

(4)重新启动ntpd服务

[atguigu@hadoop102 ~]$ sudo systemctl start ntpd

(5)设置ntpd服务开机启动

[atguigu@hadoop102 ~]$ sudo systemctl enable ntpd

3)其他机器配置(必须root用户)

(1)关闭所有节点上ntp服务和自启动

[atguigu@hadoop103 ~]$ sudo systemctl stop ntpd

[atguigu@hadoop103 ~]$ sudo systemctl disable ntpd

[atguigu@hadoop104 ~]$ sudo systemctl stop ntpd

[atguigu@hadoop104 ~]$ sudo systemctl disable ntpd

(2)在其他机器配置1分钟与时间服务器同步一次

[atguigu@hadoop103 ~]$ sudo crontab -e

编写定时任务如下:

*/1 * * * * /usr/sbin/ntpdate hadoop102

(3)修改任意机器时间

[atguigu@hadoop103 ~]$ sudo date -s "2021-9-11 11:11:11"

(4)1分钟后查看机器是否与时间服务器同步

[atguigu@hadoop103 ~]$ sudo date

学习地址:https://www.bilibili.com/video/BV1Qp4y1n7EN?p=37

第4章 常见错误及解决方案

1)防火墙没关闭、或者没有启动YARN

INFO client.RMProxy: Connecting to ResourceManager at hadoop108/192.168.10.108:8032

2)主机名称配置错误

3)IP地址配置错误

4)ssh没有配置好

5)root用户和atguigu两个用户启动集群不统一

6)配置文件修改不细心

7)不识别主机名称

java.net.UnknownHostException: hadoop102: hadoop102
    at java.net.InetAddress.getLocalHost(InetAddress.java:1475)
    at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:146)
    at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1290)
    at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1287)
    at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)

解决办法:

(1)在/etc/hosts文件中添加192.168.10.102 hadoop102

(2)主机名称不要起hadoop hadoop000等特殊名称

8)DataNode和NameNode进程同时只能工作一个(这个可以参考3.2.5的第三点解决)

9)执行命令不生效,粘贴Word中命令时,遇到-和长–没区分开。导致命令失效

解决办法:尽量不要粘贴Word中代码。

10)jps发现进程已经没有,但是重新启动集群,提示进程已经开启。

原因是在Linux的根目录下/tmp目录中存在启动的进程临时文件,将集群相关进程删除掉,再重新启动集群。

11)jps不生效

原因:全局变量hadoop java没有生效。解决办法:需要source /etc/profile文件。

12)8088端口连接不上

[atguigu@hadoop102 桌面]$ cat /etc/hosts

注释掉如下代码

#127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4

#::1 hadoop102

回炉重造地址:https://www.bilibili.com/video/BV1Qp4y1n7EN?p=38&vd_source=eb68502f30a10ee7e5e6328b4db887ac

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/374204.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

模型类的编写有没有什么靠谱的优化方法?

模型类的编写需要私有属性&#xff0c;setter...getter...方法、toString方法 和构造函数。虽然这些内容不难&#xff0c;同时也都是通过IDEA工具生成的&#xff0c;但是过程还是必须得走一遍&#xff0c;那么对于模型类的编写有没有什么优化方法?可以通过Lombok来实现优化。L…

C语言--指针进阶2

目录前言函数指针函数指针数组指向函数指针数组的指针回调函数前言 本篇文章我们将继续学习指针进阶的有关内容 函数指针 我们依然用类比的方法1来理解函数指针这一全新的概念&#xff0c;如图1 我们用一段代码来验证一下&#xff1a; int Add(int x, int y) {return xy;…

idea报错idea start filed

今天遇到idea启动失败的问题 问题分析&#xff1a; address already in use&#xff1a;bind idea需要的端口被占用 解决 重启就行&#xff0c;重启会重新分配端口。 官方解决 查看给的网站地址&#xff0c;这里官方给出的原因&#xff08;访问好慢&#xff0c;搭梯子我才…

图节点嵌入相关算法学习笔记

引言 本篇笔记为coggle 2月打卡任务&#xff0c;正好也在学习cs224w&#xff0c;干脆就一起做了&#xff0c;以下是任务列表&#xff1a; 任务名称难度任务1&#xff1a;图属性与图构造低、1任务2&#xff1a;图查询与遍历低、2任务3&#xff1a;节点中心性与应用中、2任务4&…

Spark计算框架入门笔记

Spark是一个用于大规模数据处理的统一计算引擎 注意&#xff1a;Spark不仅仅可以做类似于MapReduce的离线数据计算&#xff0c;还可以做实时数据计算&#xff0c;并且它还可以实现类似于Hive的SQL计算&#xff0c;等等&#xff0c;所以说它是一个统一的计算引擎 既然说到了Spar…

js 拖动--动态改变div的宽高大小

index.html 如下&#xff1a;&#xff08;可以新建一个index.html文件直接复制&#xff0c;打开运行&#xff09; <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <meta http-equiv"X-UA-Compatible&qu…

Python tkinter -- 第18章 画布控件之窗口

18.2.22 create_window(position, **options) 可以在画布控件中放置其他tkinter控件。放置的方法就是使用窗口组件。一个窗口组件只能容纳一个控件。如果要放置多个控件&#xff0c;可以把这些控件作为Frame控件的子控件&#xff0c;将Frame控件放入窗口组件中&#xff0c;就可…

超简单 华为OD机试用Python实现 -【踢石头子,踢石子问题】(2023-Q1 新题)

华为OD机试题 华为OD机试300题大纲踢石头子,踢石子问题题目输入输出示例一输入输出Python 代码如下所示算法思路华为OD机试300题大纲 参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,通过率才会高。 华为 OD 清单查看地址:blog.csdn.net/hihell/categ…

ChatGPT似乎有的时候并不能搞懂Java的动态分派,你懂了吗?

目录 碎碎念 ChatGPT 中出现的问题 那么正确答案应该是什么呢&#xff1f; 分派的相关知识点总结&#xff1a; 分派是什么&#xff1f; 静态分派与动态分派&#xff1a; Java语言是静态多分派&#xff0c;动态单分派的&#xff1b; 静态分派&#xff1a;静态重载多分派…

追梦之旅【数据结构篇】——详解C语言实现二叉树

详解C语言实现二叉树~&#x1f60e;前言&#x1f64c;什么是二叉树&#xff1f;二叉树的性质总结&#xff1a;整体实现内容分析&#x1f49e;1.头文件的编写&#xff1a;&#x1f64c;2.功能文件的编写&#xff1a;&#x1f64c;1&#xff09;前序遍历的数值来创建树——递归函…

IGKBoard(imx6ull)-Input设备编程之按键控制

文章目录1- input子系统介绍2- input事件目录&#xff08;1&#xff09;struct input_event 结构体&#xff08;2&#xff09;type&#xff08;事件类型&#xff09;&#xff1a;&#xff08;3&#xff09;code&#xff08;事件编码&#xff09;&#xff08;4&#xff09;value…

【华为OD机试模拟题】用 C++ 实现 - 九宫格按键输入(2023.Q1)

最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 去重求和(2023.Q1) 文章目录 最近更新的博客使用说明九宫格按键输入题目输入输出示例一输入输出说明示例二输入输出说明Code使用说明 参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,通过率才会高…

webp格式转换成png怎么转

相对于png 图片&#xff0c;webp比png小了45%&#xff0c;但是缺点是你压缩的时候需要的时间更久了&#xff1b;优点是体积小巧&#xff1b;缺点是兼容性不太好, 只有opera,和chrome支持&#xff0c;不仅如此在后期的编辑修改上也很多软件无法打开。所以我们通常要将webp格式转…

9.1 IGMPv1实验

9.4.1 IGMPv1 实验目的 熟悉IGMPv1的应用场景掌握IGMPv1的配置方法实验拓扑 实验拓扑如图9-7所示&#xff1a; 图9-7&#xff1a;IGMPv1 实验步骤 &#xff08;1&#xff09;配置IP地址 MCS1的配置 MCS1的IP地址配置如图9-8所示&#xff1a; 图9-8&#xff1a;MCS1的配置 …

xgboost学习-XGBoost的智慧

文章目录一、选择弱评估器&#xff1a;重要参数booster二、XGB的目标函数&#xff1a;重要参数objective三、求解XGB的目标函数四、参数化决策树 alpha&#xff0c;lambda五、寻找最佳树结构&#xff1a;求解 ω与T六、寻找最佳分枝&#xff1a;结构分数之差七、让树停止生长&a…

redis(10)事务和锁机制

Redis事务定义 Redis 事务是一个单独的隔离操作&#xff1a;事务中的所有命令都会序列化、按顺序地执行。事务在执行的过程中&#xff0c;不会被其他客户端发送来的命令请求所打断。 Redis 事务的主要作用就是串联多个命令防止别的命令插队。 Multi、Exec、discard Redis 事务中…

【数据挖掘实战】——应用系统负载分析与容量预测(ARIMA模型)

项目地址&#xff1a;Datamining_project: 数据挖掘实战项目代码 目录 一、背景和挖掘目标 1、问题背景 2、传统方法的不足 2、原始数据 3、挖掘目标 二、分析方法与过程 1、初步分析 2、总体流程 第一步&#xff1a;数据抽取 第二步&#xff1a;探索分析 第三步&a…

【华为OD机试模拟题】用 C++ 实现 - 内存池(2023.Q1)

最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 去重求和(2023.Q1) 文章目录 最近更新的博客使用说明内存池题目输入输出示例一输入输出说明Code使用说明 参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,通过率才会高。 华为 OD 清单查看地址:…

C++【string类用法详细介绍string类模拟实现解析】

文章目录string 类用法介绍及模拟实现一、string介绍二、string类常用接口1. string类对象的常见构造接口2.string类对象的常见容量接口3.string类对象的常见修改接口4. string类对象的常见访问及遍历接口5.string其他接口1.不常用查找接口2.字符替换3.字符串拼接4.字符串排序5…

纯x86汇编实现的多线程操作系统实践 - 第三章 BSP的守护执行

本章我们将详细讲解BSP剩下的执行代码&#xff0c;它们被安排在bp_32.asm文件中。bp_32.asm主要完成以下功能&#xff1a;系统中断初始化加载字符图形数据到内存区域将AP的启动代码和32位保护模式下的代码分别加载到内存中显示主界面以及系统启动信息向所有AP群发启动命令进入守…