【大数据】大数据Hadoop生态圈

news2024/11/6 3:04:54

文章目录

  • 大数据Hadoop生态圈-组件介绍
  • 1、HDFS(分布式文件系统)
  • 2、MapReduce(分布式计算框架)
  • 3、Spark(分布式计算框架)
  • 4、Flink(分布式计算框架)
  • 5、Yarn/Mesos(分布式资源管理器)
  • 6、Zookeeper(分布式协作服务)
  • 7、Sqoop(数据同步工具)
  • 8、Hive/Impala(基于Hadoop的数据仓库)
  • 9、HBase(分布式列存储数据库)
  • 10、Flume(日志收集工具)
  • 11、Kafka(分布式消息队列)
  • 12、Oozie(工作流调度器)

大数据Hadoop生态圈-组件介绍

Hadoop起源于Apache Nutch项目,始于2002年,是Apache Lucene的子项目之一 。2004年,Google在“操作系统设计与实现”(Operating System Design andImplementation,OSDI)会议上公开发表了题为MapReduce:Simplified Data Processing on Large Clusters(Mapreduce:简化大规模集群上的数据处理)的论文之后,受到启发的Doug Cutting等人开始尝试实现MapReduce计算框架,并将它与NDFS(Nutch Distributed File System)结合,用以支持Nutch引擎的主要算法。由于NDFS和MapReduce在Nutch引擎中有着良好的应用,所以它们于2006年2月被分离出来,成为一套完整而独立的软件,并被命名为Hadoop。到了2008年年初,hadoop已成为Apache的顶级项目,包含众多子项目,被应用到包括Yahoo在内的很多互联网公司。

Hadoop是目前应用最为广泛的分布式大数据处理框架,其具备可靠、高效、可伸缩等特点。

Hadoop的核心组件是HDFS、MapReduce。随着处理任务不同,各种组件相继出现,丰富Hadoop生态圈,目前生态圈结构大致如图所示:

在这里插入图片描述

根据服务对象和层次分为:数据来源层、数据传输层、数据存储层、资源管理层、数据计算层、任务调度层、业务模型层。接下来对Hadoop生态圈中出现的相关组件做一个简要介绍。

1、HDFS(分布式文件系统)

HDFS是整个hadoop体系的基础,负责数据的存储与管理。HDFS有着高容错性(fault-tolerant)的特点,并且设计用来部署在低廉的(low-cost)硬件上。而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。

client:切分文件,访问HDFS时,首先与NameNode交互,获取目标文件的位置信息,然后与DataNode交互,读写数据

NameNode:master节点,每个HDFS集群只有一个,管理HDFS的名称空间和数据块映射信息,配置相关副本信息,处理客户端请求。

DataNode:slave节点,存储实际数据,并汇报状态信息给NameNode,默认一个文件会备份3份在不同的DataNode中,实现高可靠性和容错性。

Secondary NameNode:辅助NameNode,实现高可靠性,定期合并fsimage和fsedits,推送给NameNode;紧急情况下辅助和恢复NameNode,但其并非NameNode的热备份。

Hadoop 2为HDFS引入了两个重要的新功能 ——Federation和高可用(HA):

Federation允许集群中出现多个NameNode,之间相互独立且不需要互相协调,各自分工,管理自己的区域。 DataNode 被用作通用的数据块存储设备。每个 DataNode 要向集群中所有NameNode 注册,并发送心跳报告,执行所有 namenode的命令。

HDFS中的高可用性消除了Hadoop 1中存在的单点故障,其中,NameNode故障将导致集群中断。HDFS的高可用性提供故障转移功能(备用节点从失败的主NameNode接管工作的过程)以实现自动化。

2、MapReduce(分布式计算框架)

MapReduce是一种基于磁盘的分布式并行批处理计算模型,用于处理大数据量的计算。其中Map对应数据集上的独立元素进行指定的操作,生成键-值对形式中间,Reduce则对中间结果中相同的键的所有值进行规约,以得到最终结果。

Jobtracker:master节点,只有一个,管理所有作业,任务/作业的监控,错误处理等,将任务分解成一系列任务,并分派给Tasktracker。

Tacktracker:slave节点,运行 Map task和Reduce task;并与Jobtracker交互,汇报任务状态。

Map task:解析每条数据记录,传递给用户编写的map()函数并执行,将输出结果写入到本地磁盘(如果为map—only作业,则直接写入HDFS)。

Reduce task:从Map 它深刻地执行结果中,远程读取输入数据,对数据进行排序,将数据分组传递给用户编写的Reduce()函数执行。

3、Spark(分布式计算框架)

Spark是一种基于内存的分布式并行计算框架,不同于MapReduce的是——Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。

Cluster Manager:在standalone模式中即为Master主节点,控制整个集群,监控worker。在YARN模式中为资源管理器

Worker节点:从节点,负责控制计算节点,启动Executor或者Driver。

Driver: 运行Application 的main()函数

Executor:执行器,是为某个Application运行在worker node上的一个进程

Spark将数据抽象为RDD(弹性分布式数据集),内部提供了大量的库,包括Spark Core、Spark SQL、Spark Streaming、MLlib、GraphX。 开发者可以在同一个应用程序中无缝组合使用这些库。

Spark Core:包含Spark的基本功能;尤其是定义RDD的API、操作以及这两者上的动作。其他Spark的库都是构建在RDD和Spark Core之上的

Spark SQL:提供通过Apache Hive的SQL变体Hive查询语言(HiveQL)与Spark进行交互的API。每个数据库表被当做一个RDD,Spark SQL查询被转换为Spark操作。

Spark Streaming:对实时数据流进行处理和控制。Spark Streaming允许程序能够像普通RDD一样处理实时数据,通过短时批处理实现的伪流处理。

MLlib:一个常用机器学习算法库,算法被实现为对RDD的Spark操作。这个库包含可扩展的学习算法,比如分类、回归等需要对大量数据集进行迭代的操作。

GraphX:控制图、并行图操作和计算的一组算法和工具的集合。GraphX扩展了RDD API,包含控制图、创建子图、访问路径上所有顶点的操作

4、Flink(分布式计算框架)

Flink是一个基于内存的分布式并行处理框架,类似于Spark,但在部分设计思想有较大出入。对 Flink 而言,其所要处理的主要场景就是流数据,批数据只是流数据的一个极限特例而已。

Flink VS Spark

Spark中,RDD在运行时是表现为Java Object,而Flink主要表现为logical plan。所以在Flink中使用的类Dataframe api是被作为第一优先级来优化的。但是相对来说在spark RDD中就没有了这块的优化了。

Spark中,对于批处理有RDD,对于流式有DStream,不过内部实际还是RDD抽象;在Flink中,对于批处理有DataSet,对于流式我们有DataStreams,但是是同一个公用的引擎之上两个独立的抽象,并且Spark是伪流处理,而Flink是真流处理。

5、Yarn/Mesos(分布式资源管理器)

YARN是下一代MapReduce,即MRv2,是在第一代MapReduce基础上演变而来的,主要是为了解决原始Hadoop扩展性较差,不支持多计算框架而提出的。

Mesos诞生于UC Berkeley的一个研究项目,现已成为Apache项目,当前有一些公司使用Mesos管理集群资源,比如Twitter。与yarn类似,Mesos是一个资源统一管理和调度的平台,同样支持比如MR、steaming等多种运算框架。

6、Zookeeper(分布式协作服务)

解决分布式环境下的数据管理问题:统一命名,状态同步,集群管理,配置同步等。

Hadoop的许多组件依赖于Zookeeper,它运行在计算机集群上面,用于管理Hadoop操作。

7、Sqoop(数据同步工具)

Sqoop是SQL-to-Hadoop的缩写,主要用于传统数据库和Hadoop之前传输数据。数据的导入和导出本质上是Mapreduce程序,充分利用了MR的并行化和容错性。

Sqoop利用数据库技术描述数据架构,用于在关系数据库、数据仓库和Hadoop之间转移数据。

8、Hive/Impala(基于Hadoop的数据仓库)

Hive定义了一种类似SQL的查询语言(HQL),将SQL转化为MapReduce任务在Hadoop上执行。通常用于离线分析。

HQL用于运行存储在Hadoop上的查询语句,Hive让不熟悉MapReduce开发人员也能编写数据查询语句,然后这些语句被翻译为Hadoop上面的MapReduce任务。

Impala是用于处理存储在Hadoop集群中的大量数据的MPP(大规模并行处理)SQL查询引擎。 它是一个用C ++和Java编写的开源软件。 与Apache Hive不同,Impala不基于MapReduce算法。 它实现了一个基于守护进程的分布式架构,它负责在同一台机器上运行的查询执行的所有方面。因此执行效率高于Apache Hive。

9、HBase(分布式列存储数据库)

HBase是一个建立在HDFS之上,面向列的针对结构化数据的可伸缩、高可靠、高性能、分布式和面向列的动态模式数据库。

HBase采用了BigTable的数据模型:增强的稀疏排序映射表(Key/Value),其中,键由行关键字、列关键字和时间戳构成。

HBase提供了对大规模数据的随机、实时读写访问,同时,HBase中保存的数据可以使用MapReduce来处理,它将数据存储和并行计算完美地结合在一起。

10、Flume(日志收集工具)

Flume是一个可扩展、适合复杂环境的海量日志收集系统。它将数据从产生、传输、处理并最终写入目标的路径的过程抽象为数据流,在具体的数据流中,数据源支持在Flume中定制数据发送方,从而支持收集各种不同协议数据。

同时,Flume数据流提供对日志数据进行简单处理的能力,如过滤、格式转换等。此外,Flume还具有能够将日志写往各种数据目标(可定制)的能力。

Flume以Agent为最小的独立运行单位,一个Agent就是一个JVM。单个Agent由Source、Sink和Channel三大组件构成

在这里插入图片描述

Source:从客户端收集数据,并传递给Channel。

Channel:缓存区,将Source传输的数据暂时存放。

Sink:从Channel收集数据,并写入到指定地址。

Event:日志文件、avro对象等源文件。

11、Kafka(分布式消息队列)

Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。实现了主题、分区及其队列模式以及生产者、消费者架构模式。

生产者组件和消费者组件均可以连接到KafKa集群,而KafKa被认为是组件通信之间所使用的一种消息中间件。KafKa内部氛围很多Topic(一种高度抽象的数据结构),每个Topic又被分为很多分区(partition),每个分区中的数据按队列模式进行编号存储。被编号的日志数据称为此日志数据块在队列中的偏移量(offest),偏移量越大的数据块越新,即越靠近当前时间。生产环境中的最佳实践架构是Flume+KafKa+Spark Streaming。

12、Oozie(工作流调度器)

Oozie是一个可扩展的工作体系,集成于Hadoop的堆栈,用于协调多个MapReduce作业的执行。它能够管理一个复杂的系统,基于外部事件来执行,外部事件包括数据的定时和数据的出现。

Oozie工作流是放置在控制依赖DAG(有向无环图 Direct Acyclic Graph)中的一组动作(例如,Hadoop的Map/Reduce作业、Pig作业等),其中指定了动作执行的顺序。

Oozie使用hPDL(一种XML流程定义语言)来描述这个图。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/370229.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LeetCode 热题 C++ 148. 排序链表 152. 乘积最大子数组 160. 相交链表

力扣148 给你链表的头结点 head ,请将其按 升序 排列并返回 排序后的链表 。 示例 1: 输入:head [4,2,1,3] 输出:[1,2,3,4]示例 2: 输入:head [-1,5,3,4,0] 输出:[-1,0,3,4,5]示例 3&#x…

php mysql校园帮忙领取快递平台

1、后台管理员用户名hsg 密码hsg 2、开发语言:PHP,数据库为MySql 3、数据库连接字符串在conn.php中修改 4、运行环境wamp5.1.7或者appserv2.5.9 5.程序编码gbk.不支持php5.3以上版本 6.本人发布的程序一律享有免费运行一次…

西安银行就业总结

引 进银行性价比最高的时刻是本科,研究生的话可以去需要研究生较多的银行,比如邮储或者证券类的中信建投。中信建投很香,要求本硕西电。研究生学历的话,一般情况下银行不会卡本科,只看最高学历,部分银行需…

内核并发消杀器(KCSAN)技术分析

一、KCSAN介绍KCSAN(Kernel Concurrency Sanitizer)是一种动态竞态检测器,它依赖于编译时插装,并使用基于观察点的采样方法来检测竞态,其主要目的是检测数据竞争。KCSAN是一种检测LKMM(Linux内核内存一致性模型)定义的数据竞争(data race)的工…

网络应用之URL

URL学习目标能够知道URL的组成部分1. URL的概念URL的英文全拼是(Uniform Resoure Locator),表达的意思是统一资源定位符,通俗理解就是网络资源地址,也就是我们常说的网址。2. URL的组成URL的样子:https://news.163.com/18/1122/10/E178J2O4000189FH.html…

最好的个人品牌策略是什么样的

在这个自我营销的时代,个人品牌越来越受到人们的重视。您的个人品牌的成功与否取决于您在专业领域拥有的知识,以及拥有将这些知识传达给其他用户的能力。如果人们认为您没有能力并且无法有效地分享有用的知识,那么您就很难获得关注并实现长远…

树莓派Linux内核配置

文章目录一、嵌入式带操作系统的启动过程二、Linux内核源码树扫盲分析三、树莓派Linux源码配置1.树莓派Linux的内核配置2.树莓派Linux内核编译3、更换树莓派内核一、嵌入式带操作系统的启动过程 1.x86,Intel的启动过程: 电源上电->BIOS->Windows内…

PHP基础(2)

PHP基础常用函数数组及多维数组数组遍历强制类型转换运算符赋值与基本运算字符串运算逻辑运算符常用函数 substr的用法是:substr(目标字符串,从字符串的哪个位置开始,然后返回往后的几个字符)strchr的用法是&#xff1…

【华为OD机试模拟题】用 C++ 实现 - 滑动求和(2023.Q1)

最近更新的博客 华为OD机试 - 入栈出栈(C++) | 附带编码思路 【2023】 华为OD机试 - 箱子之形摆放(C++) | 附带编码思路 【2023】 华为OD机试 - 简易内存池 2(C++) | 附带编码思路 【2023】 华为OD机试 - 第 N 个排列(C++) | 附带编码思路 【2023】 华为OD机试 - 考古…

几张图带你看懂Unicode和UTF-8

一、二进制 为什么要编码? 在计算机中,所有的数据在存储和运算时都要使用二进制数表示(因为计算机用高电平和低电平分别表示1和0) 我们用QQ给其他人发消息、发文件、发表情,最终会以二进制形式在网路中传输&#xff…

【多线程与高并发】- 浅谈volatile

浅谈volatile简介JMM概述volatile的特性1、可见性举个例子总结2、无法保证原子性举个例子分析使用volatile对原子性测试使用锁的机制总结3、禁止指令重排什么是指令重排序重排序怎么提高执行速度重排序的问题所在volatile禁止指令重排序内存屏障(Memory Barrier)作用volatile内…

验证性因子分析(CFA)全流程

案例与数据 某研究者想要研究关于教师懈怠感的课题,教师懈怠感是指教师在教育情境的要求下,由于无法有效应对工作压力与挫折而产生的情绪低落、态度消极状态,这种状态甚至会引发心理、生理的困扰,终至对教育工作产生厌倦&#xf…

实例8:机器人的空间描述和变换仿真

实例8:机器人的空间描述和变换仿真 实验目的 通过刚体与刚体的平动、转动基础知识的学习,熟悉位姿的描述通过Python编程实践,可视化学习坐标系的变换,熟悉空间变换 实验要求 建立一个原点位于零点的三维正交坐标系&#xff0c…

SQL零基础入门学习(十二)

SQL零基础入门学习(SQL约束) SQL CREATE INDEX 语句 CREATE INDEX 语句用于在表中创建索引。 在不读取整个表的情况下,索引使数据库应用程序可以更快地查找数据。 索引 您可以在表中创建索引,以便更加快速高效地查询数据。 用…

WooCommerce 上传文件 Vanquish v71.6

今天用wp 搭一个b2c外贸跨境电商网站 找 了一个文件上传插件,可以 上传无限数量的文件,没有文件大小限制WooCommerce 上传文件允许您上传无限数量的文件,没有任何文件大小限制。得益于其创新的块上传技术,它可以不受限制地上传任何…

【华为OD机试模拟题】用 C++ 实现 - 数据分类(2023.Q1)

最近更新的博客 华为OD机试 - 入栈出栈(C++) | 附带编码思路 【2023】 华为OD机试 - 箱子之形摆放(C++) | 附带编码思路 【2023】 华为OD机试 - 简易内存池 2(C++) | 附带编码思路 【2023】 华为OD机试 - 第 N 个排列(C++) | 附带编码思路 【2023】 华为OD机试 - 考古…

记一次SSM项目启动过程中遇到的问题(找不到符号)

最近拿了朋友的SSM项目过来参考一下开发过程,然后我这边个人情况是没有学过Java的,环境也不太清楚,虽然之前有在学校过程中做过一个旅游网站类似的SSM项目,电脑环境配置还是有些不太了解,bug修了2天大概,然…

windows下编译leveldb(动态库+静态库)

环境准备 1)下载cmake并安装 下载路径: https://cmake.org/download/2)下载leveldb源码 git clone https://github.com/google/leveldb.git3)下载googletest和benchmark,cmake编译时需要 # 进入leveldb源码路径下的third_part…

干了2年的手工点点点,感觉每天浑浑噩噩,我的自动化测试之路...

作为一个测试人员,从业年期从事手工测试的工作是没有太多坏处的,当然,如果一直点来点去那么确实自身得不到提高,这时候选择学习自动化测试是一件很有必要的事情,一来将自己从繁重的重复工作中解放出来,从事…

操作系统——6.系统调用

目录 1.概述 2.系统调用的定义和作用 2.1 定义 2.2 功能 2.3 分类 3.系统调用和库函数的区别 4.系统调用背后的过程 5.小结 1.概述 这篇文章我们主要来介绍一下操作系统中的系统调用,下面来看一下具体的框架图: 2.系统调用的定义和作用 2.1 定…