BN、SyncBN、IN、LN、GN学习记录

news2024/11/15 1:51:44

1 BatchNorm

BN的原理

BN是计算机视觉最常用的标准化方法,它沿着N、H、W维度对输入特征图求均值和方差,随后再利用均值和方差来归一化特征图。计算过程如下图所示,1)沿着通道维度计算其他维度的均值;2)沿着通道维度计算其他维度的方差;3)归一化特征图;4)加入可学习参数γ和β(在每次反向传播后更新),对归一化的特征图进行包含缩放和平移的仿射操作,

pytorch中的BN有三种:torch.nn.BatchNorm1d、torch.nn.BatchNorm2d、torch.nn.BatchNorm3d。这里拿torch.nn.BatchNorm2d来举例,它的参数如下,

Args:
    num_features: 输入特征通道数
    eps: 为保证数值稳定性(分母不能趋近或取0), 给分母加上的值, 默认值是1e-5
    momentum: 计算running_mean和running_var时使用的动量(指数平均因子), 默认值是0.1
    affine: 布尔值, 是否给BN层添加仿射变换的可学习参数γ和β, 默认为True
    track_running_stats: 布尔值, 是否记录训练中的running mean和variance, 若为False, 则该BN层在训练和验证阶段都只在当前输入中统计mean和variance, 如果此时的batch_size比较小, 那么其统计特性就会和全局统计特性有着较大偏差,可能导致糟糕的效果. 默认值为True

更新running_mean和running_var的公式

其中,为模型更新前的running_mean或running_var,为此次输入的mean或者var。在验证时(model.eval()),running_mean和running_var被视为均值和方差来标准化输入张量。

BN的优点

  1. BN使得网络中每层输入数据的分布相对稳定(可以使用较大的学习率),不仅极大提升了训练速度,收敛过程大大加快;

  1. BN使得模型对网络中的参数不那么敏感,减弱对初始化的强依赖性,简化调参过程,使得网络学习更加稳定;

  1. BN允许网络使用饱和性激活函数(例如sigmoid等),归一化后的数据,能让梯度维持在比较大的值和变化率,缓解梯度消失或者爆炸;

  1. 有轻微的正则化作用(相当于给隐藏层加入噪声,类似Dropout,能缓解过拟合。

BN的缺点

  1. 对batchsize的大小比较敏感。如果batchsize太小,则计算的均值、方差不足以代表整个数据分布。小的bathsize引入的随机性更大,难以达到收敛;

  1. 不适合于RNN、风格迁移等任务。拿风格迁移举例,由于Mini-Batch内可能存在多张无关的图片,去计算这些图片的均值和方差会弱化单张图片本身特有的一些细节信息。

代码实例

(1)随机初始化输入张量和实例化BN

import torch
import torch.nn as nn


# 固定随机种子, 使随机生成的input每次都一样
torch.manual_seed(42)
# 随机生成形状为[1,2,2,2]输入
input = torch.randn((1,2,2,2)).cuda()
print('input:', input)

# 实例化BN
bn = nn.BatchNorm2d(num_features=2, eps=0.00001, momentum=0.1, affine=True, track_running_stats=True).cuda()
bn.running_mean = (torch.ones([2])*2).cuda()
bn.running_var = (torch.ones([2])*1).cuda()
bn.train()
# 查看模型更新前的参数
print('trainning:', bn.training)
print('running_mean:', bn.running_mean)
print('running_var:', bn.running_var)
print('weight:', bn.weight)  # γ, 初始值为1
print('bias:', bn.bias)  # β, 初始值为0

# 打印结果
'''
input: tensor([[[[ 0.3367,  0.1288],
          [ 0.2345,  0.2303]],

         [[-1.1229, -0.1863],
          [ 2.2082, -0.6380]]]], device='cuda:0')
trainning: True
running_mean: tensor([2., 2.], device='cuda:0')
running_var: tensor([1., 1.], device='cuda:0')
weight: Parameter containing:
tensor([1., 1.], device='cuda:0', requires_grad=True)
bias: Parameter containing:
tensor([0., 0.], device='cuda:0', requires_grad=True)
'''

(2)经过BN层,获取输出结果

# 输出
output = bn(input)
print('output:', output)

# 查看模型更新后的参数
print('trainning:', bn.training)
print('running_mean:', bn.running_mean)
print('running_var:', bn.running_var)
print('weight:', bn.weight)
print('bias:', bn.bias)

# 打印结果, 由于没有反向传播, 所以γ和β值不变
'''
output: tensor([[[[ 1.4150, -1.4102],
          [ 0.0257, -0.0305]],

         [[-0.9276, -0.1964],
          [ 1.6731, -0.5491]]]], device='cuda:0',
       grad_fn=<CudnnBatchNormBackward0>)
trainning: True
running_mean: tensor([1.8233, 1.8065], device='cuda:0')
running_var: tensor([0.9007, 1.1187], device='cuda:0')
weight: Parameter containing:
tensor([1., 1.], device='cuda:0', requires_grad=True)
bias: Parameter containing:
tensor([0., 0.], device='cuda:0', requires_grad=True)
'''

(3)根据BN的原理,自己写一段归一化代码

# 计算输入数据的均值和方差. 注意, torch.var()函数中unbiased默认为True,表示方差的无偏估计,这里需将它设为False
cur_mean = torch.mean(input, dim=[0,2,3])
cur_var = torch.var(input, dim=[0,2,3], unbiased=False)
print('cur_mean:', cur_mean)
print('cur_var:', cur_var)

# 计算running_mean和running_var
new_mean = (torch.ones([2])*2) * (1-bn.momentum) + cur_mean * bn.momentum
new_var = (torch.ones([2])*1) * (1-bn.momentum) + cur_var * bn.momentum
print('new_mean:', new_mean)
print('new_var:', new_var)

# 打印结果, 可以看到, 计算出的new_mean和new_var与步骤2的running_mean和running_var一致
'''
cur_mean: tensor([0.2326, 0.0653])
cur_var: tensor([0.0072, 2.1872])
new_mean: tensor([1.8233, 1.8065])
new_var: tensor([0.9007, 1.1187])
'''

# 计算输出结果, 训练时用当前数据的mean和方差做标准化, 验证时用running_mean和running_var做标准化
output2 = (input - cur_mean) / torch.sqrt(cur_var + bn.eps)
print('output2:', output2)

# 打印结果, 可以看到, 计算出的output2与步骤2的output一致
'''
output2: tensor([[[[ 1.4150, -1.4102],
          [ 0.0257, -0.0305]],

         [[-0.9276, -0.1964],
          [ 1.6731, -0.5491]]]])
'''

2 SyncBatchNorm

BN的效果与batchsize的大小有很大关系。而像目标检测、语义分割这些任务,占用显存较高,每张卡分到的图片数就会变少,而在DP模式下,每张卡只能拿到自己那部分的计算结果。为了在验证或者测试模型时使用相同的running_mean和running_var,DP模式便只拿主卡上计算的均值和方差去更新running_mean和running_var,BN的效果自然就会变差。一个解决思路就是用SyncBN代替BN,使用全局的BN统计量来标准化输入,相比于单卡的BN统计量,全局的BN统计量会更准确。

SyncBatchNorm的原理

本小节的两张图片来自:https://cloud.tencent.com/developer/article/2126838

(1)计算各张卡的均值和方差

(2)同步各卡之间的均值和方差

利用torch.distributed.all_gather函数收集各GPU上的均值和方差,得到全局的均值和方差,更新running_mean和running_var;

(3)标准化输入,该过程与BN类似。

SyncBN源码

import torch
from torch.autograd.function import Function


class SyncBatchNorm(Function):

    @staticmethod
    def forward(self, input, weight, bias, running_mean, running_var, eps, momentum, process_group, world_size):
        input = input.contiguous()

        size = input.numel() // input.size(1)
        if size == 1:
            raise ValueError('Expected more than 1 value per channel when training, got input size {}'.format(size))
        count = torch.Tensor([size]).to(input.device)

        # calculate mean/invstd for input.
        mean, invstd = torch.batch_norm_stats(input, eps)

        count_all = torch.empty(world_size, 1, dtype=count.dtype, device=count.device)
        mean_all = torch.empty(world_size, mean.size(0), dtype=mean.dtype, device=mean.device)
        invstd_all = torch.empty(world_size, invstd.size(0), dtype=invstd.dtype, device=invstd.device)

        count_l = list(count_all.unbind(0))
        mean_l = list(mean_all.unbind(0))
        invstd_l = list(invstd_all.unbind(0))

        # using all_gather instead of all reduce so we can calculate count/mean/var in one go
        count_all_reduce = torch.distributed.all_gather(count_l, count, process_group, async_op=True)
        mean_all_reduce = torch.distributed.all_gather(mean_l, mean, process_group, async_op=True)
        invstd_all_reduce = torch.distributed.all_gather(invstd_l, invstd, process_group, async_op=True)

        # wait on the async communication to finish
        count_all_reduce.wait()
        mean_all_reduce.wait()
        invstd_all_reduce.wait()

        # calculate global mean & invstd
        mean, invstd = torch.batch_norm_gather_stats_with_counts(
            input,
            mean_all,
            invstd_all,
            running_mean,
            running_var,
            momentum,
            eps,
            count_all.view(-1).long().tolist()
        )

        self.save_for_backward(input, weight, mean, invstd, count_all)
        self.process_group = process_group

        # apply element-wise normalization
        out = torch.batch_norm_elemt(input, weight, bias, mean, invstd, eps)
        return out

    @staticmethod
    def backward(self, grad_output):
        grad_output = grad_output.contiguous()
        saved_input, weight, mean, invstd, count_tensor = self.saved_tensors
        grad_input = grad_weight = grad_bias = None
        process_group = self.process_group

        # calculate local stats as well as grad_weight / grad_bias
        sum_dy, sum_dy_xmu, grad_weight, grad_bias = torch.batch_norm_backward_reduce(
            grad_output,
            saved_input,
            mean,
            invstd,
            weight,
            self.needs_input_grad[0],
            self.needs_input_grad[1],
            self.needs_input_grad[2]
        )

        if self.needs_input_grad[0]:
            # synchronizing stats used to calculate input gradient.
            # TODO: move div_ into batch_norm_backward_elemt kernel
            sum_dy_all_reduce = torch.distributed.all_reduce(
                sum_dy, torch.distributed.ReduceOp.SUM, process_group, async_op=True)
            sum_dy_xmu_all_reduce = torch.distributed.all_reduce(
                sum_dy_xmu, torch.distributed.ReduceOp.SUM, process_group, async_op=True)

            # wait on the async communication to finish
            sum_dy_all_reduce.wait()
            sum_dy_xmu_all_reduce.wait()

            divisor = count_tensor.sum()
            mean_dy = sum_dy / divisor
            mean_dy_xmu = sum_dy_xmu / divisor
            # backward pass for gradient calculation
            grad_input = torch.batch_norm_backward_elemt(
                grad_output,
                saved_input,
                mean,
                invstd,
                weight,
                mean_dy,
                mean_dy_xmu
            )

        # synchronizing of grad_weight / grad_bias is not needed as distributed
        # training would handle all reduce.
        if weight is None or not self.needs_input_grad[1]:
            grad_weight = None

        if weight is None or not self.needs_input_grad[2]:
            grad_bias = None

        return grad_input, grad_weight, grad_bias, None, None, None, None, None, None

SyncBN的使用

注意,SyncBN需要在DDP环境初始化后初始化,但是要在DDP模型之前完成初始化。

import torch
from torch import distributed

distributed.init_process_group(backend='nccl')
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = torch.nn.parallel.DistributedDataParallel(model)
@classmethod
def convert_sync_batchnorm(cls, module, process_group=None):
    module_output = module
    if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
            module_output = torch.nn.SyncBatchNorm(
                module.num_features,
                module.eps,
                module.momentum,
                module.affine,
                module.track_running_stats,
                process_group,
            )
        if module.affine:
            with torch.no_grad():
                module_output.weight = module.weight
                module_output.bias = module.bias
        module_output.running_mean = module.running_mean
        module_output.running_var = module.running_var
        module_output.num_batches_tracked = module.num_batches_tracked
        if hasattr(module, "qconfig"):
            module_output.qconfig = module.qconfig
    for name, child in module.named_children():
            module_output.add_module(
                name, cls.convert_sync_batchnorm(child, process_group)
            )
    del module
    return module_output

3 InstanceNorm

IN的原理

BN注重对batchsize数据归一化,但是在图像风格化任务中,生成的风格结果主要依赖于某个图像实例,所以对整个batchsize数据进行归一化不合适,因此提出了IN,只对HW维度进行归一化,IN保留了N、C的维度。计算过程如下图所示,1)沿着H、W维度,对输入张量求均值和方差;2)利用求得的均值和方差来标准化输入张量;3)加入可学习参数γ和β,对标准化后的数据做仿射变换,

IN的使用

torch.nn.InstanceNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
class InstanceNorm2d(_InstanceNorm):
    def _get_no_batch_dim(self):
        return 3

    def _check_input_dim(self, input):
        if input.dim() not in (3, 4):
            raise ValueError('expected 3D or 4D input (got {}D input)'
                             .format(input.dim()))


class _InstanceNorm(_NormBase):
    def __init__(
        self,
        num_features: int,
        eps: float = 1e-5,
        momentum: float = 0.1,
        affine: bool = False,
        track_running_stats: bool = False,
        device=None,
        dtype=None
    ) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super(_InstanceNorm, self).__init__(
            num_features, eps, momentum, affine, track_running_stats, **factory_kwargs)

    def _check_input_dim(self, input):
        raise NotImplementedError

    def _get_no_batch_dim(self):
        raise NotImplementedError

    def _handle_no_batch_input(self, input):
        return self._apply_instance_norm(input.unsqueeze(0)).squeeze(0)

    def _apply_instance_norm(self, input):
        return F.instance_norm(
            input, self.running_mean, self.running_var, self.weight, self.bias,
            self.training or not self.track_running_stats, self.momentum, self.eps)

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
                              missing_keys, unexpected_keys, error_msgs):
        version = local_metadata.get('version', None)
        # at version 1: removed running_mean and running_var when
        # track_running_stats=False (default)
        if version is None and not self.track_running_stats:
            running_stats_keys = []
            for name in ('running_mean', 'running_var'):
                key = prefix + name
                if key in state_dict:
                    running_stats_keys.append(key)
            if len(running_stats_keys) > 0:
                error_msgs.append(
                    'Unexpected running stats buffer(s) {names} for {klass} '
                    'with track_running_stats=False. If state_dict is a '
                    'checkpoint saved before 0.4.0, this may be expected '
                    'because {klass} does not track running stats by default '
                    'since 0.4.0. Please remove these keys from state_dict. If '
                    'the running stats are actually needed, instead set '
                    'track_running_stats=True in {klass} to enable them. See '
                    'the documentation of {klass} for details.'
                    .format(names=" and ".join('"{}"'.format(k) for k in running_stats_keys),
                            klass=self.__class__.__name__))
                for key in running_stats_keys:
                    state_dict.pop(key)

        super(_InstanceNorm, self)._load_from_state_dict(
            state_dict, prefix, local_metadata, strict,
            missing_keys, unexpected_keys, error_msgs)

    def forward(self, input: Tensor) -> Tensor:
        self._check_input_dim(input)

        if input.dim() == self._get_no_batch_dim():
            return self._handle_no_batch_input(input)

        return self._apply_instance_norm(input)

IN的优点

IN适合于生成式对抗网络的相关任务,如风格迁移。图片生成的结果主要依赖于某个图像实例,对整个batchsize进行BN操作不适合风格迁移任务,在该任务中使用IN不仅可以加速模型收敛,并且可以保持每个图像实例之间的独立性,不受通道和batchsize的影响。

IN的缺点

如果要利用到特征图通道之间的相关性,不建议使用IN做归一化处理。

4 LayerNorm

LN的原理

在NLP任务中,比如文本任务,不同样本的长度往往不一样,使用BN来标准化则不太合理。因此提出了LN,对CHW维度进行归一化。计算过程如下图所示,1)沿着C、H、W维度求输入张量的均值和方差;2)利用所求得的均值和方差标准化输入;3)加入可学习参数γ和β,对标准化后的数据做仿射变换,

LN的使用

torch.nn.LayerNorm(normalized_shape, eps=1e-05, elementwise_affine=True)
class LayerNorm(Module):
    __constants__ = ['normalized_shape', 'eps', 'elementwise_affine']
    normalized_shape: Tuple[int, ...]
    eps: float
    elementwise_affine: bool

    def __init__(self, normalized_shape: _shape_t, eps: float = 1e-5, elementwise_affine: bool = True,
                 device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            # mypy error: incompatible types in assignment
            normalized_shape = (normalized_shape,)  # type: ignore[assignment]
        self.normalized_shape = tuple(normalized_shape)  # type: ignore[arg-type]
        self.eps = eps
        self.elementwise_affine = elementwise_affine
        if self.elementwise_affine:
            self.weight = Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
            self.bias = Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
        else:
            self.register_parameter('weight', None)
            self.register_parameter('bias', None)

        self.reset_parameters()

    def reset_parameters(self) -> None:
        if self.elementwise_affine:
            init.ones_(self.weight)
            init.zeros_(self.bias)

    def forward(self, input: Tensor) -> Tensor:
        return F.layer_norm(
            input, self.normalized_shape, self.weight, self.bias, self.eps)

    def extra_repr(self) -> str:
        return '{normalized_shape}, eps={eps}, ' \
            'elementwise_affine={elementwise_affine}'.format(**self.__dict__)

LN的优点

LN不需要批量训练。在单条数据内部就能完成归一化操作,因此可以用于batchsize=1和RNN的训练中,效果比BN更优。不同的输入样本有不同的均值和方差,可以更快、更好地达到最优效果。LN不需要保存batchsize的均值和方差,节省了额外的存储空间。

LN的缺点

LN与batchsize无关,在小batchsize上效果可能会比BN好,但是在大batchsize的效果还是BN更好。

5 GroupNorm

GN的原理

GN是为了解决BN对较小的batchsize效果差的问题,它将通道分成num_groupss组,每组包含channel/num_groups个通道,则特征图变为(N, G, C//G, H, W),然后计算每组(C//G, H, W)维度的均值和方差,这样就与batchsize无关。GN的极端情况就是LN和IN,分别对应G等于1和G等于C。GN的计算过程如下图所示,1)沿着C//G、H、W维度计算输入张量的均值和方差;2)利用所求得的均值和方差标准化输入;3)加入可学习参数γ和β,对标准化后的数据做仿射变换,

GN的使用

torch.nn.GroupNorm(num_groups, num_channels, eps=1e-05, affine=True, device=None, dtype=None)
class GroupNorm(Module):
    __constants__ = ['num_groups', 'num_channels', 'eps', 'affine']
    num_groups: int
    num_channels: int
    eps: float
    affine: bool

    def __init__(self, num_groups: int, num_channels: int, eps: float = 1e-5, affine: bool = True,
                 device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super(GroupNorm, self).__init__()
        if num_channels % num_groups != 0:
            raise ValueError('num_channels must be divisible by num_groups')

        self.num_groups = num_groups
        self.num_channels = num_channels
        self.eps = eps
        self.affine = affine
        if self.affine:
            self.weight = Parameter(torch.empty(num_channels, **factory_kwargs))
            self.bias = Parameter(torch.empty(num_channels, **factory_kwargs))
        else:
            self.register_parameter('weight', None)
            self.register_parameter('bias', None)

        self.reset_parameters()

    def reset_parameters(self) -> None:
        if self.affine:
            init.ones_(self.weight)
            init.zeros_(self.bias)

    def forward(self, input: Tensor) -> Tensor:
        return F.group_norm(
            input, self.num_groups, self.weight, self.bias, self.eps)

    def extra_repr(self) -> str:
        return '{num_groups}, {num_channels}, eps={eps}, ' \
            'affine={affine}'.format(**self.__dict__)

GN的优点

GN不依赖于batchsize,可以很好适用于RNN,这是GN的巨大优势。论文指出G为32或每个group的通道数为16时,效果最优;在batchsize小于16时,GN优于BN。

GN的缺点

在大batchsize时,效果不如BN。

6 总结

  1. BN对小batchsize的效果不好;

  1. IN作用在图像像素上,适用于风格化迁移;

  1. LN主要对RNN作用明显;

  1. GN将channel分组,然后再做归一化, 在batchsize<16的时候, 效果优于BN。

参考文章

【博客园】https://www.cnblogs.com/lxp-never/p/11566064.html

【知乎】https://zhuanlan.zhihu.com/p/395855181

【腾讯云】https://cloud.tencent.com/developer/article/2126838

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/359564.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

numpy入门

目录&#xff1a; numpy数据类型numpy维度numpy常用操作 numpy数据类型 numpy的数据类型是numpy.ndarray&#xff0c;它不同于python的array.array&#xff0c;ndarray可以处理多维数据。ndarray的常见属性有dtype&#xff0c;shape&#xff0c;size等&#xff0c;在进行一些…

接口自动化测试框架-Python+Requests+Yaml

零代码极限封装的【接口自动化测试框架】&#xff0c;目前已经完全能够实现真正的零代码落地并在企业中推广。其中用到的最核心的封装技术如下&#xff1a;核心技术1.热加载封装,是全网最早应用于自动化测试框架的封装技术。2.Requests统一请求封装3.接口关联封装以及接口关联封…

微服务03 分布式搜索引擎 elasticsearch ELK kibana RestAPI RestClient

分布式搜索引擎01-- elasticsearch基础0.学习目标1.初识elasticsearch1.1.了解ES1.1.1.elasticsearch的作用elasticsearch是一款非常强大的开源搜索引擎&#xff0c;具备非常多强大功能&#xff0c;可以帮助我们从海量数据中快速找到需要的内容例如&#xff1a;在GitHub搜索代码…

【Python】带你进入字典的世界

如约而至&#xff0c;紧接着上一期文章&#xff0c;小编将会陆续把全套的Python笔记将依次发放给大家&#xff0c;便于大家学习Python、期末备考、巩固基础等(这几期是公众号小插曲&#xff0c;后期发放编程技术的话主要还是会围绕Java来展开~感谢大家支持)字典字典是Python内置…

鸿翼企业网盘 激活企业协作办公

信息化的发展&#xff0c;使企业网盘成为了许多企业必备的“数字基础设施”。鸿翼企业网盘&#xff0c;让网盘不仅是数据存储的“仓库”&#xff0c;更是数据利用的“中枢”&#xff0c;以网盘为载体&#xff0c;激活企业“协作力”。 企业网盘起初是为了解决企业内数据统一存储…

基于SpringBoot+MyBaits_Vue+ElementUi构建项目

基于SpringBootMyBaits_VueElementUi构建项目 1.Spring Boot 后台搭建 1.1.项目初始化 前期准备&#xff1a;maven&#xff0c;jdk&#xff08;1.8&#xff09;&#xff0c;idea 1.1.1.下载地址 Spring官方提供了Springboot自定义配置地址&#xff0c;可依照相关选项搭建所…

6.4 实战:实现 Web API 版本控制

第6章 构建 RESTful 服务 6.1 RESTful 简介 6.2 构建 RESTful 应用接口 6.3 使用 Swagger 生成 Web API 文档 6.4 实战&#xff1a;实现 Web API 版本控制 6.4 实战&#xff1a;实现 Web API 版本控制 如果业务需求变更&#xff0c;Web API 功能发生变化时应该如何处理呢&…

易错:List中的add方法添加对象时出现重复的问题

错误&#xff1a; 用list存储User对象信息&#xff0c;当存储多个对象时&#xff0c;发现存储的数据都是一样的 之前代码&#xff1a; User user new User();List<User> list new ArrayList<>();for (int i 0; i < 5; i) {user.setName("Tom"i);…

drf-yasg —— Django REST Framework 文档生成

drf-yasg —— Django REST Framework 文档生成 drf-yasg 安装及全局配置 安装以及这个官方文档非常详细的描述了&#xff0c;我就不多说了。 配置好并运行 Django 项目以后&#xff0c;就可以使用浏览器访问 /swagger/ 和 /redoc/ &#xff08;链接取决于你的 urls 的配置&am…

看见统计——第五章 统计推断:贝叶斯学派

看见统计——第五章 统计推断&#xff1a;贝叶斯学派 引言 推理的频率学派认为&#xff0c;概率在本质上是与频率联系在一起的。这种解释实际上是很自然的。按照频率学派的说法&#xff0c;一枚公平的硬币出现人头的概率是1/2。简单地说&#xff0c;在同一个硬币的无限次独立…

打造一款日志分析工具

一、简介 作为一名安全从业者&#xff0c;网络安全事件的应急响应工作是必不可少的&#xff0c;那么在应急支撑时&#xff0c;针对大量的日志数据便需要借助自动化工具实现快速的归类检测&#xff0c;并提取出所需的关键日志数据。本篇文章主要通过利用python语言编写一款web日…

自带超多工具,好用又免费,这3款手机浏览器你用过了吗

手机浏览器是我们手机中必备的一款软件APP&#xff0c;一款好用的浏览器&#xff0c;可以帮助我们提高工作效率&#xff0c;节省时间。对于懒癌患者来说&#xff0c;手机上安装各种各种的app很麻烦&#xff0c;下面给大家介绍自带超多的工具&#xff0c;好用且免费的浏览器&…

SpringCloud网关Zuul和GateWay区别

getway和zuul没有进行参数调优的时候&#xff0c;getway的性能会远高于zuul。 分析&#xff0c;在空负载的时候&#xff0c;SpringCloud Gateway比zuul 1 性能高50%左右&#xff0c;在模拟处理50ms业务后&#xff0c;&#xff0c;SpringCloud Gateway比zuul 1 性能高9倍左右。 …

嵌入式Qt 开发一个视频播放器

上篇文章&#xff1a;嵌入式 Qt开发一个音乐播放器&#xff0c;使用Qt制作了一个音乐播放器&#xff0c;并在OK3568开发板上进行了运行测试&#xff0c;实际测试效果还不错。 本篇继续来实现一个Qt视频播放器软件&#xff0c;可以实现视频列表的显示与选择播放等&#xff0c;先…

【干货】如何用低代码帮助企业实施OKR?

近年来受疫情的影响&#xff0c;许多企业都开始使用 OKR来进行目标管理。OKR是一套让企业持续保持活力的有效管理工具&#xff0c;能够帮助企业实现目标、激励员工、增加团队凝聚力、减少组织内耗&#xff0c;从而进一步实现创新。但是在实际布局中&#xff0c;很多企业在使用 …

基础面试题 :大端、小端及转换方式

理解网络中大端和小端往往是一道基础面试题 &#xff0c;这里作为记录和整理&#xff0c;希望能帮到大家 目录 前言 一、字节序 二、什么小端顺序 三、什么大端顺序 四、处理器体系所属网络字节顺序 五、大小端转换 1、大端整形转换为小端 2、小端转换为小端 3、…

知乎x-zse-96 参数补环境

本文精工学习参考 目标链接 aHR0cHM6Ly93d3cuemhpaHUuY29tL3NlYXJjaD90eXBlPWNvbnRlbnQmcT1weXRob24接口分析 参数x-zse-93&#xff1a;相当于版本号 参数x-zse-96&#xff1a;看起来需要破解 参数x-zst-81&#xff1a;请求发现可以置空 综上所述x-zse-96才需要逆向。 参数…

中间件安全—Apache常见漏洞

中间件安全—Apache常见漏洞1.Apache常见漏洞1.1.Apache介绍1.2.Apache HTTPD 换行解析漏洞&#xff08;CVE-2017-15715&#xff09;1.2.1.漏洞介绍1.2.2.漏洞环境1.2.2.1.运行漏洞环境1.2.2.2.访问漏洞环境1.2.3.漏洞复现1.2.3.1.拦截1.2.3.2.添加换行1.2.3.3.访问文件1.3.Apa…

[机器学习]卷积神经网络DLC

一、基本结构 CNN的大概模式可以总结为&#xff1a;卷积层池化层全连接层激活函数 而一些比较大型的网络如VGG一般将CNN作为构成单元进行堆叠&#xff0c;而内部卷积核和池化也可以堆叠多个。各个部分的功能如下&#xff1a; 卷积&#xff1a;特征提取 池化&#xff1a;降维和防…

硬件设备 之一 详解 JTAG、SWD 接口、软 / 硬件断点、OpenOCD、J-link

JTAG 和 SWD 在嵌入式开发中可以说是随处可见&#xff0c;他们通常被用来配合 J-Link 、ULINK、ST-LINK 等仿真器在线调试嵌入式程序。此外&#xff0c;还有飞思卡尔芯片中的 Background debug mode&#xff08;BDM&#xff09; 接口&#xff0c;Atmel 芯片中的 debugWIRE &…