文章目录
- 1 堆排序的概念
- 2 堆排序基本思想
- 3 堆排序步骤图解说明
- 4 堆排序的代码实现
1 堆排序的概念
1) 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为 O(nlogn),它也是不稳定排序。
2) 堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆, 注意 : 没有要求结点的左孩子的值和右孩子的值的大小关系。
3) 每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆
4) 大顶堆举例说明
5) 一般升序采用大顶堆,降序采用小顶堆
2 堆排序基本思想
堆排序的基本思想是:
1) 将待排序序列构造成一个大顶堆
2) 此时,整个序列的最大值就是堆顶的根节点。
3) 将其与末尾元素进行交换,此时末尾就为最大值。
4) 然后将剩余 n-1 个元素重新构造成一个堆,这样会得到 n 个元素的次小值。如此反复执行,便能得到一个有序
序列了。
可以看到在构建大顶堆的过程中,元素的个数逐渐减少,最后就得到一个有序序列了.
3 堆排序步骤图解说明
步骤一 构造初始堆。将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)。
原始的数组 [4, 6, 8, 5, 9]
1) .假设给定无序序列结构如下
此时,我们就将一个无序序列构造成了一个大顶堆。
步骤二 将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,
3) .再将堆顶元素 8 与末尾元素 5 进行交换,得到第二大元素 8.
再简单总结下堆排序的基本思路:
1).将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;
2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
4 堆排序的代码实现
package sort;
import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;
/**
* @author Andy
* @email andy.gsq@qq.com
* @date 2023/2/19 12:48:43
* @desc 堆排序
*/
public class HeapSort {
public static void main(String[] args) {
//要求将数组进行升序排序
int arr[] = {4, 6, 8, 5, 9};
// 创建要给 80000 个的随机的数组
// int[] arr = new int[8000000];
for (int i = 0; i < 5; i++) {
arr[i] = (int) (Math.random() * 800); // 生成一个[0, 8000000) 数
}
System.out.println("排序前");
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String date1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间是=" + date1Str);
heapSort(arr);
Date data2 = new Date();
String date2Str = simpleDateFormat.format(data2);
System.out.println("排序前的时间是=" + date2Str);
System.out.println("排序后=" + Arrays.toString(arr));
}
public static void heapSort(int arr[]) {
int temp = 0;
System.out.println("堆排序!!");
//完成我们最终代码
//将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
for (int i = arr.length / 2 - 1; i >= 0; i--) {
adjustHeap(arr, i, arr.length);
}
/*
* 2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换
步骤,直到整个序列有序。
*/
for (int j = arr.length - 1; j > 0; j--) {
//交换
temp = arr[j];
arr[j] = arr[0];
arr[0] = temp;
adjustHeap(arr, 0, j);
}
//System.out.println("数组=" + Arrays.toString(arr));
}
/**
* 将一个数组(二叉树), 调整成一个大顶堆
* 功能: 完成 将 以 i 对应的非叶子结点的树调整成大顶堆
* 举例 int arr[] = {4, 6, 8, 5, 9}; => i = 1 => adjustHeap => 得到 {4, 9, 8, 5, 6}
* 如果我们再次调用 adjustHeap 传入的是 i = 0 => 得到 {4, 9, 8, 5, 6} => {9,6,8,5, 4}
*
* @param arr 待调整的数组
* @param i 表示非叶子结点在数组中索引
* @param lenght 表示对多少个元素继续调整, length 是在逐渐的减少
*/
public static void adjustHeap(int arr[], int i, int lenght) {
int temp = arr[i];//先取出当前元素的值,保存在临时变量
//开始调整
//说明
//1. k = i * 2 + 1 k 是 i 结点的左子结点
for (int k = i * 2 + 1; k < lenght; k = k * 2 + 1) {
if (k + 1 < lenght && arr[k] < arr[k + 1]) { //说明左子结点的值小于右子结点的值
k++; // k 指向右子结点
}
if (arr[k] > temp) { //如果子结点大于父结点
arr[i] = arr[k]; //把较大的值赋给当前结点
i = k; //!!! i 指向 k,继续循环比较
} else {
break;//!
}
}
//当 for 循环结束后,我们已经将以 i 为父结点的树的最大值,放在了 最顶(局部)
arr[i] = temp;//将 temp 值放到调整后的位置
}
}