【日常】矩阵正态分布参数检验问题

news2024/11/22 11:06:58

最近给凯爹做的一个苦力活,统计检验这个东西说实话也挺有趣,跟算法设计一样,好的检验真的是挺难设计的,就有近似算法的那种感觉,检验很难保证size和power都很理想,所以就要做tradeoff,感觉这个假设检验的思路还是挺有趣,所以破例记录一下。

今天阳历生日(其实我每年都是过农历生日),凯爹职场情场皆得意,前脚拿到offer,后脚抱得美人归,说到底凯爹还是个挺励志的人,二战时吃那么多苦,如今终于是苦尽甘来(这不狠宰他一手哈哈哈哈哈哈哈哈


文章目录


假设检验① H 0 : A , B H_0:A,B H0:A,B是对角阵

1 生成模拟数据 X X X

对于matrix normal distribution, M N p q ( 0 , A , B ) MN_{pq}(0,A,B) MNpq(0,A,B) 0 0 0代表零均值, A , B A,B A,B分别是行与列的协方差。从分布中抽取两组模拟数据, X ( 1 ) = ( X 1 ( 1 ) , . . . , X n 1 ( 1 ) ) , X ( 2 ) = ( X 1 ( 2 ) , . . . , X n 2 ( 2 ) ) X^{(1)}=(X_1^{(1)},...,X_{n1}^{(1)}),X^{(2)}=(X_1^{(2)},...,X_{n2}^{(2)}) X(1)=(X1(1),...,Xn1(1)),X(2)=(X1(2),...,Xn2(2)) X 1 ( 1 ) X_1^{(1)} X1(1)维度为 p × q p\times q p×q。两组数据的分布中 A A A不一样, B B B一样, n 1 = n 2 = n n_1=n_2=n n1=n2=n

参数设置: p = { 10 , 20 } , q = { 10 , 20 } , n = { 5 , 8 } p=\{10,20\},q=\{10,20\},n=\{5,8\} p={10,20},q={10,20},n={5,8}

矩阵 A p × p = A_{p\times p}= Ap×p=
{ H 0 : I H 1 : I + U + δ I 1 + δ \left\{\begin{aligned} &H_0:I\\ &H_1:\frac{I+U+\delta I}{1+\delta} \end{aligned}\right. H0:IH1:1+δI+U+δI

矩阵 B q × q : b i j = 0. 4 ∣ i − j ∣ , 1 ≤ i , j ≤ q B_{q\times q}:b_{ij}=0.4^{|i-j|},1\le i,j\le q Bq×q:bij=0.4ij,1i,jq

其中 δ = ∣ λ min ⁡ ( I + U ) ∣ + 0.05 \delta=|\lambda_{\min}(I+U)|+0.05 δ=λmin(I+U)+0.05 λ min ⁡ ( I + U ) \lambda_{\min}(I+U) λmin(I+U)表示取矩阵 I + U I+U I+U的最小特征根的绝对值。 U U U是稀疏对称矩阵,有 z = { 2 } z=\{2\} z={2}个非零元素。有 z 2 \frac z2 2z个非零元素在下/上三角中(不在对角线上),服从 U ( 2 ( log ⁡ p n q ) 1 / 2 , 4 ( log ⁡ p n q ) 1 / 2 ) U(2\left(\frac{\log p}{nq}\right)^{1/2},4\left(\frac{\log p}{nq}\right)^{1/2}) U(2(nqlogp)1/2,4(nqlogp)1/2)均匀分布,正负随机,位置随机。


2 虽然生成模拟数据时已知 A , B A,B A,B,但假设 A , B A,B A,B未知,对其进行估计。

对于每种估计方法,需要重复第3部分。

2.1 第一种估计方法:Naive

直接代入真实的 A , B A,B A,B

2.2 第二种估计方法:Sample

A p × p A_{p\times p} Ap×p的朴素估计: A ~ ∝ 1 n q ∑ k = 1 n X k X k ⊤ \tilde A\propto \frac{1}{nq}\sum_{k=1}^nX_kX_k^\top A~nq1k=1nXkXk B q × q B_{q\times q} Bq×q的朴素估计: B ~ ∝ 1 n p ∑ k = 1 n X k ⊤ X k \tilde B\propto \frac{1}{np}\sum_{k=1}^nX_k^\top X_k B~np1k=1nXkXk,注意,此处估计值差了常数倍,不可直接调用。

A A A已知时(用 A ~ \tilde A A~代替),可以改进 B B B的估计:
B ^ = 1 n p ∑ k = 1 n X k ⊤ ( A ~ c ) − 1 X k \widehat B=\frac1{np}\sum_{k=1}^nX_k^\top\left(\frac{\tilde A}{c}\right)^{-1}X_k B =np1k=1nXk(cA~)1Xk

c c c是一个未知常数,后续计算中会被抵消。

B B B已知时(用 B ~ \tilde B B~代替),可以改进 A A A的估计:
A ^ = 1 n q ∑ k = 1 n X k ( A ~ c ) − 1 X k ⊤ \widehat A=\frac1{nq}\sum_{k=1}^nX_k\left(\frac{\tilde A}{c}\right)^{-1}X_k^\top A =nq1k=1nXk(cA~)1Xk

c c c是一个未知常数,后续计算中会被抵消。

2.3 第三种估计方法:Banded(只可对代表时间维度的矩阵 B B B使用)

只保留 B ^ \widehat B B 对角线以及两侧副对角线上的值:
B ˉ = { b ^ i , j if  ∣ i − j ∣ ≤ 2 0 otherwise \bar B=\left\{\begin{aligned}&\hat b_{i,j}&&\text{if }|i-j|\le 2\\ &0&&\text{otherwise} \end{aligned}\right. Bˉ={b^i,j0if ij2otherwise


3 对 A , B A,B A,B的估计值进行假设检验

3.1 假设检验① H 0 : B H_0:B H0:B是对角阵

M n = max ⁡ 1 ≤ i < j ≤ q M i j , M i j M_n=\max_{1\le i<j\le q}M_{ij},M_{ij} Mn=max1i<jqMij,Mij b i j b_{ij} bij标准化后的值, M i j = b ^ i j 2 θ ^ i j / ( n p ) M_{ij}=\frac{\hat b_{ij}^2}{\hat \theta_{ij}/(np)} Mij=θ^ij/(np)b^ij2,此处常数 c c c会相互抵消,其中:
θ ^ i j = 1 n p ∑ k = 1 n ∑ l = 1 p [ ( X k ⊤ ( A ~ c ) − 1 / 2 ) i , l ( X k ⊤ ( A ~ c ) − 1 / 2 ) j , l − b ^ i , j ] 2 \hat \theta_{ij}=\frac1{np}\sum_{k=1}^n\sum_{l=1}^p\left[\left(X_k^\top\left(\frac{\tilde A}{c}\right)^{-1/2}\right)_{i,l}\left(X_k^\top\left(\frac{\tilde A}{c}\right)^{-1/2}\right)_{j,l}-\hat b_{i,j}\right]^2 θ^ij=np1k=1nl=1p Xk(cA~)1/2 i,l Xk(cA~)1/2 j,lb^i,j 2

由于 M n − 4 log ⁡ p + log ⁡ log ⁡ p M_n-4\log p+\log\log p Mn4logp+loglogp服从Gumble分布,设统计量 Φ α = I ( M n ≥ α + 4 log ⁡ q − log ⁡ log ⁡ q ) \Phi_\alpha=I(M_n\geq_{\alpha}+4\log q-\log\log q) Φα=I(Mnα+4logqloglogq),其中 q α = − log ⁡ ( 8 π ) − 2 log ⁡ log ⁡ ( 1 − α ) − 1 q_\alpha=-\log(8\pi)-2\log\log(1-\alpha)^{-1} qα=log(8π)2loglog(1α)1

Φ α = 1 \Phi_\alpha=1 Φα=1时拒绝 B B B是对角阵的原假设。

3.2 类似地,假设检验① H 0 : A H_0:A H0:A是对角阵

相当于转置 X ( 1 ) X^{(1)} X(1),再重复3.1操作,即,对应 p p p换成 q q q X k ⊤ X_k^\top Xk换成 X k X_k Xk A ~ \tilde A A~换成 B ~ \tilde B B~

3.3 检验协方差 A A A哪些位置不为0

Ψ ( A ) = { ( i , j ) : a i , j ≠ 0 , 1 ≤ i < j ≤ p } Ψ ( τ = 4 ) = { ( i , j ) : M i , j ≥ τ p , 1 ≤ i < j ≤ p } \Psi(A)=\{(i,j):a_{i,j}\neq 0,1\le i<j\le p\}\\ \Psi(\tau=4)=\{(i,j):M_{i,j}\ge\tau p,1\le i<j\le p\} Ψ(A)={(i,j):ai,j=0,1i<jp}Ψ(τ=4)={(i,j):Mi,jτp,1i<jp}

3.4 检验协方差 B B B哪些位置不为0

Ψ ( B ) = { ( i , j ) : b i , j ≠ 0 , 1 ≤ i < j ≤ q } Ψ ( τ = 4 ) = { ( i , j ) : M i , j ≥ τ q , 1 ≤ i < j ≤ q } \Psi(B)=\{(i,j):b_{i,j}\neq 0,1\le i<j\le q\}\\ \Psi(\tau=4)=\{(i,j):M_{i,j}\ge\tau q,1\le i<j\le q\} Ψ(B)={(i,j):bi,j=0,1i<jq}Ψ(τ=4)={(i,j):Mi,jτq,1i<jq}


4 上述1-3步骤,每组参数设置 { p , q , n , z } \{p,q,n,z\} {p,q,n,z}(共8种组合)重复1000次

参数设置: p = { 10 , 20 } , q = { 10 , 20 } , n 1 = n 2 = n = { 5 , 8 } , z = { 2 } , α = 5 % p=\{10,20\},q=\{10,20\},n_1=n_2=n=\{5,8\},z=\{2\},\alpha=5\% p={10,20},q={10,20},n1=n2=n={5,8},z={2},α=5%,需要满足 n p ≥ q , n q ≥ p np\ge q,nq\ge p npq,nqp

论文参数设置: p = { 50 , 200 } , q = { 50 , 200 } , n 1 = n 2 = n = { 10 , 50 } , z = { 8 } , α = 5 % p=\{50,200\},q=\{50,200\},n_1=n_2=n=\{10,50\},z=\{8\},\alpha=5\% p={50,200},q={50,200},n1=n2=n={10,50},z={8},α=5%

4.1 对于每组参数设置,计算1000次试验后假设检验①的size

Size=P(原假设为真,拒绝原假设)=P(犯第一类错误),即假设检验①种矩阵 A 0 A_0 A0被拒绝的概率,好的方法需要将size控制在0.05以内。

4.2 对于每组参数设置,计算1000次试验后假设检验①的power

Power=P(原假设为假,拒绝原假设),即假设检验①种 A 1 , B A_1,B A1,B被拒绝的概率。


Appendix 代码实现

这个仿真实现并不难,当然最好是用matlab写,这里给出numpy的示例代码。

  • 矩阵正态分布随机变量的生成可以用scipy.stats里封装好的方法,也可以用cholesky分解来做。

  • 测试结果表明小规模数据上的size还行,但是power明显不太好,但是原论文的效果就很漂亮:

在这里插入图片描述

  • 但是这个量级的参数跑起来会特别慢。
# -*- coding: UTF-8 -*-
# @author: caoyang
# @email: caoyang@163.sufe.edu.cn

import math
import time
import numpy as np
from scipy.linalg import sqrtm
from scipy import stats

# Randomly generate matrix normal distributed matrix.
# M is a p-by-q matrix, U is a p-by-p matrix, and V is a q-by-q matrix.
def randomize_matrix_normal_variable(M, U, V):
	# X_rand = np.random.randn(*M.shape)
	# P = np.linalg.cholesky(U)
	# Q = np.linalg.cholesky(V)
	# return M + P @ X_rand @ Q.T
	return stats.matrix_normal(M, U, V).rvs()
	
# Randomly generate matrix U
def randomize_matrix_u(p, q, n, z=2):
	temp = np.sqrt((np.log(p) / n / q))
	low = 2 * temp
	high = 4 * temp
	U = np.zeros((p, p))	# initialize
	total_index = [(i, j) for i in range(p) for j in range(p)]
	np.random.shuffle(total_index)
	upper_index = []
	lower_index = []
	i = 0
	while len(upper_index) < int(z / 2) and len(lower_index) < int(z / 2):
		if total_index[i][0] < total_index[i][1] and len(upper_index) < int(z / 2):
			upper_index.append((total_index[i][0], total_index[i][1]))
			lower_index.append((total_index[i][1], total_index[i][0]))
		elif total_index[i][0] > total_index[i][1] and len(lower_index) < int(z / 2):
			lower_index.append((total_index[i][0], total_index[i][1]))
			upper_index.append((total_index[i][1], total_index[i][0]))
		i += 1
	for upper_indice, lower_indice in zip(upper_index, lower_index):
		sign = 2 * np.random.randint(0, 2) - 1	# random 1 and -1 for sign
		value = sign * np.random.uniform(low, high)
		U[upper_indice] = value
		U[lower_indice] = value
	return U

# Randomly generate matrix A
def randomize_matrix_a(hypothesis, p, q, n, z=2):
	if hypothesis == 0:
		return np.eye(p)
	elif hypothesis == 1:
		U = randomize_matrix_u(p, q, n, z)
		delta = abs(np.min(np.linalg.eigvals(np.eye(p) + U))) + .05
		return (np.eye(p) + U + delta * np.eye(p)) / (1 + delta)
		
	assert False, f'Hypothesis should be 0 or 1 but got {hypothesis} !'

# Randomly generate matrix B
def randomize_matrix_b(q):
	# return np.eye(q)
	return np.array([[0.4 ** (abs(i - j)) for j in range(q)] for i in range(q)])

# Calculate tilde A and tilde B
def calc_tilde_A_and_B(p, q, n, sample):
	tilde_A = np.zeros((p, p))
	for X in sample:
		tilde_A += X @ X.T
	tilde_A /= (n * q)
	tilde_B = np.zeros((q, q))
	for X in sample:
		tilde_B += X.T @ X
	tilde_B /= (n * p)
	return tilde_A, tilde_B

# Method 1
def estimate_method_1(A, B):
	hat_A = A
	hat_B = B
	return hat_A, hat_B

# Method 2	
def estimate_method_2(p, q, n, sample):
	tilde_A, tilde_B = calc_tilde_A_and_B(p, q, n, sample)
	hat_A = np.zeros((p, p))
	for X in sample:
		hat_A += X @ np.linalg.inv(tilde_B) @ X.T
	hat_A /= (n * q)

	hat_B = np.zeros((q, q))
	for X in sample:
		hat_B += X.T @ np.linalg.inv(tilde_A) @ X
	hat_B /= (n * q)
	return hat_A, hat_B

# Method 3	
def estimate_method_3(p, q, n, sample):
	hat_A, hat_B = estimate_method_2(p, q, n, sample)
	for i in range(p):
		for j in range(p):
			if abs(i - j) > 2:
				hat_B[i, j] = 0
	return hat_A, hat_B

# Hypothesis 1: B is diagonal matrix
def test_B(p, q, n, sample, tilde_A, hat_B, alpha=.05, tau=4):
	hat_theta = np.zeros((q, q))
	tilde_A_inv = sqrtm(np.linalg.inv(tilde_A))
	for i in range(q):
		for j in range(q):
			res = 0
			for k in range(n):
				X_k_tilde_A_inv = sample[k].T @ tilde_A_inv
				for l in range(p):
					res += (X_k_tilde_A_inv[i, l] * X_k_tilde_A_inv[j, l] - hat_B[i, j]) ** 2
			hat_theta[i, j] = res
	hat_theta /= (n * p)
	M = n * p * hat_B * hat_B / (hat_theta)
	for i in range(q):
		for j in range(i + 1):
			M[i, i] = -999
	M_n = np.max(M)
	q_alpha = -np.log(8 * math.pi) - 2 * np.log(-np.log(1 - alpha))
	Phi_alpha = 1 * (M_n > q_alpha + 4 * np.log(q) - np.log(np.log(q)))
	
	return Phi_alpha, M
		
# Hypothesis 2: A is diagonal matrix
def test_A(p, q, n, sample, tilde_B, hat_A, alpha=.05, tau=4):
	sample = list(map(lambda X: X.T, sample))
	return test_B(q, p, n, sample, tilde_B, hat_A, alpha)
	
def run():
	p_choices = [10, 20]
	q_choices = [10, 20]
	n_choices = [5, 8]
	# p_choices = [50, 200]
	# q_choices = [50, 200]
	# n_choices = [10, 50]
	N = 1000
	alpha = .05
	z = 2
	tau = 4

	time_string = time.strftime('%Y%m%d%H%M%S')
	filename = f'res1-{time_string}.txt'
	with open(filename, 'w') as f:
		pass

	for p in p_choices:
		for q in q_choices:
			for n in n_choices:
				print(f'p = {p}, q = {q}, n = {n}')
				count_Phi_alpha_B_0 = 0
				count_Phi_alpha_A_0 = 0
				count_Phi_alpha_B_1 = 0
				count_Phi_alpha_A_1 = 0
				for _ in range(N):
					A_0 = randomize_matrix_a(0, p, q, n, z)
					A_1 = randomize_matrix_a(1, p, q, n, z)
					B = randomize_matrix_b(q)

					sample_0 = [randomize_matrix_normal_variable(np.zeros((p, q)), A_0, B) for _ in range(n)]
					sample_1 = [randomize_matrix_normal_variable(np.zeros((p, q)), A_1, B) for _ in range(n)]
					
					tilde_A_0, tilde_B_0 = calc_tilde_A_and_B(p, q, n, sample_0)
					tilde_A_1, tilde_B_1 = calc_tilde_A_and_B(p, q, n, sample_0)
					
					hat_A_0, hat_B_0 = estimate_method_2(p, q, n, sample_0)
					hat_A_1, hat_B_1 = estimate_method_2(p, q, n, sample_1)
					# hat_A_0, hat_B_0 = estimate_method_1(A_0, B)
					# hat_A_1, hat_B_1 = estimate_method_1(A_1, B)

					Phi_alpha_B_0, M_B0 = test_B(p, q, n, sample_0, tilde_A_0, hat_B_0, alpha, tau)
					Phi_alpha_A_0, M_A0 = test_A(p, q, n, sample_0, tilde_B_0, hat_A_0, alpha, tau)
					Phi_alpha_B_1, M_B1 = test_B(p, q, n, sample_1, tilde_A_1, hat_B_1, alpha, tau)
					Phi_alpha_A_1, M_A1 = test_A(p, q, n, sample_1, tilde_B_1, hat_A_1, alpha, tau)

					count_Phi_alpha_B_0 += Phi_alpha_B_0
					count_Phi_alpha_A_0 += Phi_alpha_A_0
					count_Phi_alpha_B_1 += Phi_alpha_B_1
					count_Phi_alpha_A_1 += Phi_alpha_A_1

					#####################################
					# 3.3 & 3.4
					Psi_B0 = (B != 0) * 1												# 得到零一矩阵(可用于画热力图)
					Psi_tau_B0 = (M_B0 >= tau * p) * 1									# 得到零一矩阵(可用于画热力图)

					where_B0 = np.where(Psi_B0 == 1)
					print([(x, y) for (x, y) in zip(where_B0[0], where_B0[1])])			# 得到零一矩阵中元素1的坐标

					where_tau_B0 = np.where(Psi_tau_B0 == 1)
					print([(x, y) for (x, y) in zip(where_tau_B0[0], where_tau_B0[1])])	# 得到零一矩阵中元素1的坐标

					
					# ----------------------------------
					
					Psi_A0 = (A_0 != 0) * 1												# 得到零一矩阵(可用于画热力图)
					Psi_tau_A0 = (M_A0 >= tau * q) * 1									# 得到零一矩阵(可用于画热力图)

					where_A0 = np.where(Psi_A0 == 1)
					print([(x, y) for (x, y) in zip(where_A0[0], where_A0[1])])			# 得到零一矩阵中元素1的坐标

					where_tau_A0 = np.where(Psi_tau_A0 == 1)
					print([(x, y) for (x, y) in zip(where_tau_A0[0], where_tau_A0[1])])	# 得到零一矩阵中元素1的坐标

					# ----------------------------------
					# 以下类似
					Psi_B1 = (B != 0) * 1
					Psi_tau_B1 = (M_B1 >= tau * p) * 1

					# ----------------------------------
					
					Psi_A1 = (A_1 != 0) * 1
					Psi_tau_A1 = (M_A1 >= tau * q) * 1
					#####################################


				print('Phi_alpha_B_0: ', count_Phi_alpha_B_0)
				print('Phi_alpha_A_0: ', count_Phi_alpha_A_0)
				print('Phi_alpha_B_1: ', count_Phi_alpha_B_1)
				print('Phi_alpha_A_1: ', count_Phi_alpha_A_1)

				with open(filename, 'a') as f:
					f.write(f'Phi_alpha_B_0: {count_Phi_alpha_B_0}\n')
					f.write(f'Phi_alpha_A_0: {count_Phi_alpha_A_0}\n')		
					f.write(f'Phi_alpha_B_1: {count_Phi_alpha_B_1}\n')		
					f.write(f'Phi_alpha_A_1: {count_Phi_alpha_A_1}\n')		
run()

假设检验② H 0 : R A 1 = R A 2 H_0:R_A^1=R_A^2 H0:RA1=RA2

5 生成模拟数据 X X X

数据从matrix normal distribution, M N p q ( 0 , A ( g ) , B ( g ) ) MN_{pq}(0,A^{(g)},B^{(g)}) MNpq(0,A(g),B(g))中生成。 B ( g ) B^{(g)} B(g) A R ( 1 ) AR(1) AR(1)过程的自相关系数矩阵,系数为0.8和0.9.此处简化使用协方差矩阵 B q × q g : b i j = 0. 4 ∣ i − j ∣ , 1 ≤ i , j ≤ q B^{g}_{q\times q}:b_{ij}=0.4^{|i-j|},1\le i,j\le q Bq×qg:bij=0.4ij,1i,jq的相关系数矩阵,同**1 生成模拟数据 X X X**中一样。

H 0 H_0 H0下, A ( 1 ) = A ( 2 ) = Σ ( 1 ) = D 1 / 2 Σ ∗ ( 1 ) D 1 / 2 A^{(1)}=A^{(2)}=\Sigma^{(1)}=D^{1/2}{\Sigma^*}^{(1)}D^{1/2} A(1)=A(2)=Σ(1)=D1/2Σ(1)D1/2,其中:

Σ ∗ ( 1 ) = ( σ i , j ∗ ( 1 ) ) = { 1 if  i = j 0.5 if  5 ( k − 1 ) + 1 ≤ i ≠ j ≤ 5 k  with  k = 1 , . . . , p / 5 0 otherwise {\Sigma^*}^{(1)}=(\sigma_{i,j}^{*(1)})=\left\{\begin{aligned} &1&&\text{if }i=j\\ &0.5&&\text{if }5(k-1)+1\le i\neq j\le 5k\text{ with }k=1,...,p/5\\ &0&&\text{otherwise} \end{aligned}\right. Σ(1)=(σi,j(1))= 10.50if i=jif 5(k1)+1i=j5k with k=1,...,p/5otherwise

即非零值集中在对角线附近, D D D为对焦矩阵, d i , i = U n i f ( 0.5 , 2.5 ) d_{i,i}=Unif(0.5,2.5) di,i=Unif(0.5,2.5)

H 1 H_1 H1下, ( A ( 1 ) ) − 1 = ( Σ ( 1 ) + δ I ) / ( 1 + δ ) (A^{(1)})^{-1}=(\Sigma^{(1)}+\delta I)/(1+\delta) (A(1))1=(Σ(1)+δI)/(1+δ) ( A ( 2 ) ) − 1 = ( Σ ( 1 ) + U + δ I ) / ( 1 + δ ) (A^{(2)})^{-1}=(\Sigma^{(1)}+U+\delta I)/(1+\delta) (A(2))1=(Σ(1)+U+δI)/(1+δ),两者相差一个稀疏矩阵 U U U,其中 δ = ∣ min ⁡ { λ min ⁡ ( Σ ( 1 ) ) , λ min ⁡ ( Σ ( 1 ) + U ) } ∣ + 0.05 \delta=|\min\{\lambda_{\min}(\Sigma^{(1)}),\lambda_{\min}(\Sigma^{(1)}+U)\}|+0.05 δ=min{λmin(Σ(1)),λmin(Σ(1)+U)}+0.05 U U U是稀疏对称矩阵,有 z = 2 z=2 z=2个非零元素,有 z / 2 z/2 z/2个非零元素在下/上三角中(不在对角线上),服从 U ( 3 ( log ⁡ p n q ) 1 / 2 , 5 ( log ⁡ p n q ) 1 / 2 ) U(3\left(\frac{\log p}{nq}\right)^{1/2},5\left(\frac{\log p}{nq}\right)^{1/2}) U(3(nqlogp)1/2,5(nqlogp)1/2)的均匀分布,正负随机,位置随机。


6 估计 B ~ ( g ) \tilde B^{(g)} B~(g)的3种方法

对于每种估计方法,需要重复第7部分

6.1 第一种估计方法:Naive

直接代入真实的 B ( g ) B^{(g)} B(g)

6.2 第二种估计方法:Sample

B ~ ( g ) = 1 n g p ∑ k = 1 n g ( X k ( g ) ) ⊤ X k ( g ) \tilde B^{(g)}=\frac{1}{n_gp}\sum_{k=1}^{n_g}(X_k^{(g)})^\top X_k^{(g)} B~(g)=ngp1k=1ng(Xk(g))Xk(g)

6.3 第三种估计方法:Banded

只保留 B ~ ( g ) \tilde B^{(g)} B~(g)对角线以及两侧副对角线上的值:
B ˉ ( g ) = { b ~ i , j ( g ) if  ∣ i − j ∣ ≤ 2 0 otherwise \bar B^{(g)}=\left\{\begin{aligned}&\tilde b_{i,j}^{(g)}&&\text{if }|i-j|\le 2\\&0&&\text{otherwise}\end{aligned}\right. Bˉ(g)={b~i,j(g)0if ij2otherwise


7 对两个协相关矩阵 A A A的相关系数矩阵 R A ( g ) R^{(g)}_A RA(g)进行假设检验

7.1 假设检验② H 0 : R A 1 = R A 2 H_0:R_A^1=R_A^2 H0:RA1=RA2,即第一组和第二组的相关系数矩阵是否相同

公式太长,直接截图了:

在这里插入图片描述

7.2 检验相关系数矩阵 R A 1 R_A^1 RA1 R A 2 R_A^2 RA2哪些位置不同

Ψ ∗ ( R A 1 , R A 2 ) = { ( i , j ) : r ^ i , j ( 1 ) ≠ r ^ i , j ( 2 ) , 1 ≤ i < j ≤ p } Ψ ∗ ( τ = 4 ) = { ( i , j ) : M i , j ∗ ≥ τ log ⁡ ( p ) , 1 ≤ i < j ≤ p } \Psi^*(R_A^1,R_A^2)=\{(i,j):\hat r_{i,j}^{(1)}\neq \hat r_{i,j}^{(2)},1\le i<j\le p\}\\ \Psi^*(\tau=4)=\{(i,j):M_{i,j}^*\ge \tau \log (p),1\le i < j \le p\} Ψ(RA1,RA2)={(i,j):r^i,j(1)=r^i,j(2),1i<jp}Ψ(τ=4)={(i,j):Mi,jτlog(p),1i<jp}


8 上述5-7步骤,每组参数设置 { p , q , n , z } \{p,q,n,z\} {p,q,n,z}(共8种组合),重复1000次

在这里插入图片描述


代码实现

跟第一个检验的代码有很大的共通处,其实我看到第二个才知道这个检验在做什么事情,大概是自相关时间序列上的协方差和相关系数检验:

# -*- coding: UTF-8 -*-
# @author: caoyang
# @email: caoyang@163.sufe.edu.cn

import math
import time
import numpy as np
from scipy.linalg import sqrtm
from scipy import stats

# Randomly generate matrix normal distributed matrix.
# M is a p-by-q matrix, U is a p-by-p matrix, and V is a q-by-q matrix.
def randomize_matrix_normal_variable(M, U, V):
	return stats.matrix_normal(M, U, V).rvs()

# Randomly generate matrix U
def randomize_matrix_u(p, q, n, z=2):
	temp = np.sqrt((np.log(p) / n / q))
	low = 3 * temp
	high = 5 * temp
	U = np.zeros((p, p))	# initialize
	total_index = [(i, j) for i in range(p) for j in range(p)]
	np.random.shuffle(total_index)
	upper_index = []
	lower_index = []
	i = 0
	while len(upper_index) < int(z / 2) and len(lower_index) < int(z / 2):
		if total_index[i][0] < total_index[i][1] and len(upper_index) < int(z / 2):
			upper_index.append((total_index[i][0], total_index[i][1]))
			lower_index.append((total_index[i][1], total_index[i][0]))
		elif total_index[i][0] > total_index[i][1] and len(lower_index) < int(z / 2):
			lower_index.append((total_index[i][0], total_index[i][1]))
			upper_index.append((total_index[i][1], total_index[i][0]))
		i += 1
	for upper_indice, lower_indice in zip(upper_index, lower_index):
		sign = 2 * np.random.randint(0, 2) - 1	# random 1 and -1 for sign
		value = sign * np.random.uniform(low, high)
		U[upper_indice] = value
		U[lower_indice] = value
	return U

# Randomly generate matrix A
def randomize_matrix_a(hypothesis, p, q, n, z=2):
	Sigma_star = np.zeros((p, p))
	def _check(_i, _j):
		if _i == _j:
			return False
		for _k in range(p // 5):
			if 5 * (_k - 1) <= _i < 5 * _k and 5 * (_k - 1) <= _j < 5 * _k:
				return True
		return False
	for i in range(p):
		for j in range(p):
			if i == j:
				Sigma_star[i, j] = 1
			elif _check(i, j):
				Sigma_star[i, j] = .5
			else:
				Sigma_star[i, j] = 0

	D = np.diag(np.random.uniform(.5, 2.5, p))
	D_sqrt = np.sqrt(D)
	Sigma = D_sqrt @ Sigma_star @ D_sqrt	

	if hypothesis == 0:
		A_1 = Sigma[:, :]
		A_2 = Sigma[:, :]
		return A_1, A_2


	elif hypothesis == 1:
		U = randomize_matrix_u(p, q, n, z)
		delta = abs(min(
			np.min(np.linalg.eigvals(Sigma + U)),
			np.min(np.linalg.eigvals(Sigma)),
		)) + .05
		A_1 = np.linalg.inv((Sigma + delta * np.eye(p)) / (1 + delta))
		A_2 = np.linalg.inv((Sigma + U + delta * np.eye(p)) / (1 + delta))
		# A_1 = (Sigma + delta * np.eye(p)) / (1 + delta)
		# A_2 = (Sigma + U + delta * np.eye(p)) / (1 + delta)
		return A_1, A_2
		
	assert False, f'Hypothesis should be 0 or 1 but got {hypothesis} !'


# Randomly generate matrix B
def randomize_matrix_b(q):
	# return np.eye(q)
	return np.array([[0.4 ** (abs(i - j)) for j in range(q)] for i in range(q)])

# Calculate tilde B
def calc_tilde_B(p, q, n, sample):
	tilde_B = np.zeros((q, q))
	for X in sample:
		tilde_B += X.T @ X
	tilde_B /= (n * p)
	return tilde_B


# Calculate hat A
def calc_hat_A(p, q, n, sample, tilde_B):
	hat_A = np.zeros((p, p))
	tilde_B_inv = np.linalg.inv(tilde_B)
	for X in sample:
		hat_A += X @ tilde_B_inv @ X.T
	hat_A /= (n * q)
	return hat_A

# Calculate hat R
def calc_hat_R(p, q, n, hat_A):
	hat_R = np.zeros((p, p))
	for i in range(p):
		for j in range(p):
			hat_R[i, j] = hat_A[i, j] / np.sqrt(hat_A[i, i] * hat_A[j, j])
	return hat_R


# Method 1
def estimate_method_1(B):
	hat_B = B
	return hat_B

# Method 2	
def estimate_method_2(p, q, n, sample):
	tilde_B = calc_tilde_B(p, q, n, sample)
	return tilde_B

# Method 3	
def estimate_method_3(p, q, n, sample):
	bar_B = calc_tilde_B(p, q, n, sample)
	for i in range(p):
		for j in range(p):
			if abs(i - j) > 2:
				bar_B[i, j] = 0
	return bar_B

# Hypothesis: R_A^1 = R_A^2
def test(p, q, n, A_1, A_2, B, sample_1, sample_2, alpha=0.05, tau=4):
	tilde_B_1 = calc_tilde_B(p, q, n, sample_1)
	tilde_B_2 = calc_tilde_B(p, q, n, sample_2)

	# 上面是用的estimate_method_2, 可以用另外两种
	# tilde_B_1 = estimate_method_1(B)
	# tilde_B_2 = estimate_method_1(B)
	# tilde_B_1 = estimate_method_2(p, q, n, sample_1)
	# tilde_B_2 = estimate_method_2(p, q, n, sample_2)
	# tilde_B_1 = estimate_method_3(p, q, n, sample_1)
	# tilde_B_2 = estimate_method_3(p, q, n, sample_2)
	
	hat_A_1 = calc_hat_A(p, q, n, sample_1, tilde_B_1)
	hat_A_2 = calc_hat_A(p, q, n, sample_2, tilde_B_2)
	hat_R_1 = calc_hat_R(p, q, n, hat_A_1)
	hat_R_2 = calc_hat_R(p, q, n, hat_A_2)

	tilde_B_1_inv = sqrtm(np.linalg.inv(tilde_B_1))
	tilde_B_2_inv = sqrtm(np.linalg.inv(tilde_B_2))
	
	M = np.zeros((p, p))
	for i in range(p):
		for j in range(p):
			theta_1 = 0
			theta_2 = 0
			for k in range(n):
				X_k_tilde_B_1_inv = sample_1[k] @ tilde_B_1_inv
				X_k_tilde_B_2_inv = sample_2[k] @ tilde_B_2_inv
				for l in range(q):
					theta_1 += (X_k_tilde_B_1_inv[i, l] * X_k_tilde_B_1_inv[j, l] - hat_A_1[i, j]) ** 2
					theta_2 += (X_k_tilde_B_2_inv[i, l] * X_k_tilde_B_2_inv[j, l] - hat_A_2[i, j]) ** 2
			theta_1 /= (n * q)
			theta_2 /= (n * q)
			pretty_theta_1 = theta_1 / hat_A_1[i, i] / hat_A_1[j, j]
			pretty_theta_2 = theta_2 / hat_A_2[i, i] / hat_A_2[j, j]
			M[i, j] = ((hat_R_1[i, j] - hat_R_2[i, j]) ** 2) / (pretty_theta_1 / n / q + pretty_theta_2 / n / q)

	for i in range(p):
		for j in range(i + 1):
			M[i, i] = -999
			
	M_n = np.max(M)
	q_alpha = -np.log(8 * math.pi) - 2 * np.log(-np.log(1 - alpha))
	Phi_alpha = 1 * (M_n > q_alpha + 4 * np.log(q) - np.log(np.log(q)))

	##########################
	# 7.2
	# ------------------------
	Psi_star = 1 * (hat_R_1 != hat_R_2)												# 得到零一矩阵(可用于画热力图)
	hat_Psi_star = 1 * (M > tau * np.log(p))										# 得到零一矩阵(可用于画热力图)

	where_Psi_star = np.where(Psi_star == 1)									
	# print([(x, y) for (x, y) in zip(where_Psi_star[0], where_Psi_star[1])])			# 得到零一矩阵中元素1的坐标

	where_hat_Psi_star = np.where(hat_Psi_star == 1)
	# print([(x, y) for (x, y) in zip(where_hat_Psi_star[0], where_hat_Psi_star[1])])	# 得到零一矩阵中元素1的坐标
	##########################
	
	return Phi_alpha, Psi_star, hat_Psi_star
					
def run():
	p_choices = [10, 20]
	q_choices = [10, 20]
	n_choices = [5, 8]
	z = 2
	alpha = .05
	N = 1000
	tau = 4

	time_string = time.strftime('%Y%m%d%H%M%S')
	filename = f'res2-{time_string}.txt'
	with open(filename, 'w') as f:
		pass
	
	for p in p_choices:
		for q in q_choices:
			for n in n_choices:
				print(f'p = {p}, q = {q}, n = {n}')
				count_Phi_alpha_0 = 0
				count_Phi_alpha_1 = 0
				for _ in range(N):
					A_01, A_02 = randomize_matrix_a(0, p, q, n, z)
					A_11, A_12 = randomize_matrix_a(1, p, q, n, z)
					B = randomize_matrix_b(q)
					sample_01 = [randomize_matrix_normal_variable(np.zeros((p, q)), A_01, B) for _ in range(n)]
					sample_02 = [randomize_matrix_normal_variable(np.zeros((p, q)), A_02, B) for _ in range(n)]
					sample_11 = [randomize_matrix_normal_variable(np.zeros((p, q)), A_11, B) for _ in range(n)]
					sample_12 = [randomize_matrix_normal_variable(np.zeros((p, q)), A_12, B) for _ in range(n)]
					
					# 7.2的Psi在这里返回
					Phi_alpha_0, Psi_star_0, hat_Psi_star_0 = test(p, q, n, A_01, A_02, B, sample_01, sample_02, alpha, tau)
					Phi_alpha_1, Psi_star_1, hat_Psi_star_1 = test(p, q, n, A_11, A_12, B, sample_11, sample_12, alpha, tau)
					
					count_Phi_alpha_0 += Phi_alpha_0
					count_Phi_alpha_1 += Phi_alpha_1
				print('Phi_alpha_0: ', count_Phi_alpha_0)
				print('Phi_alpha_1: ', count_Phi_alpha_1)

				with open(filename, 'a') as f:
					f.write(f'Phi_alpha_0: {count_Phi_alpha_0}\n')
					f.write(f'Phi_alpha_1: {count_Phi_alpha_1}\n')
				
	
if __name__ == '__main__':

	run()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/350989.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DPR-34 AC22V【双位置继电器】

系列型号&#xff1a; DPR-20双位置继电器&#xff1b;DPR-31双位置继电器&#xff1b; DPR-32双位置继电器&#xff1b;DPR-33双位置继电器&#xff1b; DPR-34双位置继电器&#xff1b;DPR-35双位置继电器&#xff1b; DPR-11双位置继电器&#xff1b;DPR-12双位置继电器&…

Python-项目实战--贪吃蛇小游戏-游戏框架搭建(3)

1.游戏框架搭建介绍pygame开发图像界面游戏的几个要素&#xff0c;并且把贪吃蛇游戏的整体框架搭建完成本节知识点包括&#xff1a;pygame的初始化和退出游戏主窗口游戏循环和游戏时钟主窗口背景颜色绘制文本pygame的坐标系游戏事件监听绘制图形定时器事件1.5绘制文本pygame的f…

Nuclei文*件上*传FUZZ POC

目录 1.前言 2. Nuclei文件上传FUZZ POC 3. 实战中的应用 1.前言 该文件上传FUZZ POC主要来源于一个靶*场,该POC 主要用来FUZZ目标js页面中的upload ajax请求,以此来进一步尝试文件上传漏*洞利*用。 这里也要感谢下“打工仔1号”提供的开*发人员常见的文*件上*传javaScr…

设计模式(九)----结构型模式之代理模式

一、结构型模式 结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式&#xff0c;前者采用继承机制或者实现机制来组织接口和类&#xff0c;后者釆用组合或聚合来组合对象。 由于组合关系或聚合关系比继承关系耦合度低&#xff0c;满…

数字孪生|可视化图表之堆叠柱状图

一、含义 堆叠柱状图&#xff08;Stacked Bar Chart&#xff09;将每个柱子进行分割以显示相同类型下各个数据的大小情况&#xff0c;它将多个数据集的柱子彼此叠加显示&#xff0c;适合用来显示大类别如何细分为较小的类别&#xff0c;以及每部分与总量之间的关系。在展示不同…

Lecture5 实现线性回归(Linear Regression with PyTorch)

目录 1 Pytorch实现线性回归 1.1 实现思路 1.2 完整代码 2 各部分代码逐行详解 2.1 准备数据集 2.2 设计模型 2.2.1 代码 2.2.2 代码逐行详解 2.2.3 疑难点解答 2.3 构建损失函数和优化器 2.4 训练周期 2.5 测试结果 3 线性回归中常用优化器 1 Pytorch实现线性回归…

网络协议(七):传输层-UDP

网络协议系列文章 网络协议(一)&#xff1a;基本概念、计算机之间的连接方式 网络协议(二)&#xff1a;MAC地址、IP地址、子网掩码、子网和超网 网络协议(三)&#xff1a;路由器原理及数据包传输过程 网络协议(四)&#xff1a;网络分类、ISP、上网方式、公网私网、NAT 网络…

06- 信用卡反欺诈 (机器学习集成算法) (项目六)

本项目为 kaggle 项目 项目难点在于: 盗刷的比例占总数据量的比例较低, 直接预测为非盗刷也有 99.8% 的准确率.data.info() # 查看所有信息msno.matrix(data) # 查看缺失值axis1 时 # 删除列显示颜色种类 from matplotlib import colors plt.colormaps() # mag…

关于知识图谱TransR

论文题目 Learning Entity and Relation Embeddings for Knowledge Graph Completion 论文链接 TransR 文中指出&#xff0c;不管是TransE还是TransH都是将实体和关系映射同一空间&#xff0c;但是&#xff0c;一个实体可能具有多个层面的信息&#xff0c;不同的关系可能关注…

ray简单介绍

ray使用也有一段时间了, 这篇文章总结下ray的使用场景和用法 ray可以做什么? 总结就两点: 可以将其视为一个进程池(当然不仅限于此), 可以用于开发并发应用还可以将应用改造为分布式 基于以上两点, 有人称之为:Modern Parallel and Distributed Python 构成 Ray AI Runtim…

Redis多级缓存

文章目录一. 什么是多级缓存二. JVM进程缓存一. 什么是多级缓存 传统的缓存策略一般是请求到达Tomcat后&#xff0c;先查询Redis&#xff0c;如果未命中则查询数据库&#xff0c;如图&#xff1a; 存在下面的问题&#xff1a; 请求要经过Tomcat处理&#xff0c;Tomcat的性能…

Linux高级IO

文章目录一、五种 IO 模型1.阻塞 IO2.非阻塞 IO3.信号驱动 IO4. IO 多路转接5.异步 IO二、高级 IO 重要概念1.同步通信和异步通信2.阻塞和非阻塞fcntl 系统调用3.其他高级 IO三、I/O 多路转接之 select1.函数原型socket 就绪的条件2.理解 select 的执行过程3.使用示例4. select…

新手小白如何入门黑客技术?

你是否对黑客技术感兴趣呢&#xff1f;感觉成为黑客是一件很酷的事。那么作为新手小白&#xff0c;我们该如何入门黑客技术&#xff0c;黑客技术又是学什么呢&#xff1f; 其实不管你想在哪个新的领域里有所收获&#xff0c;你需要考虑以下几个问题&#xff1a; 首先&#xff…

Springboot扩展点之FactoryBean

前言FactoryBean是一个有意思&#xff0c;且非常重要的扩展点&#xff0c;之所以说是有意思&#xff0c;是因为它老是被拿来与另一个名字比较类似的BeanFactory来比较&#xff0c;特别是在面试当中&#xff0c;动不动就问你&#xff1a;你了解Beanfactory和FactoryBean的区别吗…

spring cloud gateway网关和链路监控

文章目录 目录 文章目录 前言 一、网关 1.1 gateway介绍 1.2 如何使用gateway 1.3 网关优化 1.4自定义断言和过滤器 1.4.1 自定义断言 二、Sleuth--链路追踪 2.1 链路追踪介绍 2.2 Sleuth介绍 2.3 使用 2.4 Zipkin的集成 2.5 使用可视化zipkin来监控微服务 总结 前言 一、网关…

ubuntu wordpress建站

nginx 安装测试 https://blog.csdn.net/leon_zeng0/article/details/113578143 ubuntu 基于apache2安装wordpress https://ubuntu.com/tutorials/install-and-configure-wordpress#7-configure-wordpress 报错403的话&#xff0c;是权限没搞对&#xff0c;解决参考https://ww…

空间误差分析:统一的应用导向处理(Matlab代码实现)

&#x1f468;‍&#x1f393;个人主页&#xff1a;研学社的博客&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5;&#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密…

深度学习算法面试常问问题(二)

X86和ARM架构在深度学习侧的区别&#xff1f; X86和ARM架构分别应用于PC端和低功耗嵌入式设备&#xff0c;X86指令集很复杂&#xff0c;一条很长的指令就可以完成很多功能&#xff1b;而ARM指令集很精简&#xff0c;需要几条精简的短指令完成很多功能。 影响模型推理速度的因…

mysql分库分表概念及原理、ShardingSphere实现mysql集群分库分表读写分离

一&#xff1a;分库分表概念 1.1 为什么要对数据库进行分表 索引的极限&#xff1a;单表数据量达到几十万或上百万以上&#xff0c;使用索引性能提升也不明显。 分表使用门槛&#xff1a;单表行数超过 500 万行或者单表容量超过 2GB&#xff0c;才推荐进行分库分表。 分表适用…

MIT 6.S965 韩松课程 04

Lecture 04: Pruning and Sparsity (Part II) 文章目录Lecture 04: Pruning and Sparsity (Part II)剪枝率分析每层的敏感度自动剪枝微调和训练稀疏网络彩票假说稀疏度的系统支持不均衡负载M:N 稀疏度本讲座提纲章节 1&#xff1a;剪枝率分析每层的敏感度AMC: AutoML for Model…