布隆过滤器和布谷鸟过滤器详解

news2024/11/16 16:35:20

今天和大家分享下布隆过滤器和布谷鸟过滤器

一.布隆过滤器

1.简单介绍

布隆过滤器是用于检索一个元素是否在一个集合中的算法,是一种用空间换时间的查询算法。

2.实现原理

布隆过滤器的存储结构是一个bitmap结构,初始值都是0,如下图所示:
在这里插入图片描述
当需要存储一个数据的时候,会通过多次(这里假设为3次)hash函数运算之后,计算出3个hash值,然后将计算出的这3个hash值当做坐标,将数组对应的坐标数据由0改成1,以此来标记这个数据已经存储在数组中了。如下图所示:
在这里插入图片描述
等到需要查询数据是否在数组中时,就通过hash计算出对应的坐标,判断是否全都为1,如果都为1数据就可能存在,如果有一个为0,则数据一定不存在。

  • 为什么这里说可能存在能,因为可能会出现hash碰撞的情况,不同的数据经过hash函数运算之后,计算出来的hash坐标却相同,导致数据本来不存在数组中,但是这里却判断存在,因此布隆过滤器会出现误判的情况,但是概率会很低,误判的概率和设置的hash运算次数是成反比的。
    如下图所示:
    在这里插入图片描述
    Data和Data2的hash值一样,但是Data数据存在,Data2不存在,在判断Data2的时候,布隆过滤器就会判断Data2也存在,由此产生误判。

这里有个很有意思的网站,大家可以自己动手去看下数据存储的具体过程:https://www.jasondavies.com/bloomfilter/网站内容如下:
在这里插入图片描述

总的来说,布隆过滤器的判断:存在->可能存在,不存在->一定不存在。

  • 根据上述特性,布隆过滤器在很多场景下,可以帮我们判断大部分的判断请求。因此较多用于高并发的场景下使用,比如处理缓存击穿、用户视频推荐等场景。

3. 布隆过滤器的缺点

  • 误判:
    上文已经说明一点了,就是布隆过滤器会产生误判,在此就不过多赘述了。
  • 当数组过大时,查询效率不高:
    因为布隆过滤器的判断方式是根据多次hash值判断的,当数组过大,那么hash值的跨度可能就越大,跨度大就是不连续,那么CPU的缓存命中率就会变低,就会影响查询效率。
  • 布隆过滤器不能删除元素:
    因为不同的数据可能会计算出相同的hash值,因此我们如果要删除某个元素,可能也会影响其他的元素的判断。在这个限制条件下,当数据量大的时候,就会导致很多的垃圾数据。并且数据量越大,误判率也就会越高。

二.布谷鸟过滤器

1.简单介绍

布谷鸟过滤器可以说是一个增强版的布隆过滤器,可以删除元素,查询效率更高,空间利用率更高。

2.实现原理

布谷鸟过滤器不同于布隆过滤器主要有两点改动:

  • hash算法:
    在布谷鸟过滤器中,数组中存储的是每个元素的"指纹信息",也就是hash运算之后的几个bit位。查询数据的时候,就是看看对应的位置上有没有对应的“指纹”信息,删除数据的时候,也只是抹掉该位置上的“指纹”而已。
  • 由于指纹是对元素进行 hash 计算得出的,那么必然会出现 hash 碰撞的问题,也就是“指纹”相同的情况,也就是会出现误判的情况,所以这点和布隆过滤器一样。
    布谷鸟过滤器的hash算法是基于布谷鸟哈希算法做了改进,计算公式如下:
fp = fingerprint(x)
h1 = hash(x)
h2 = h1 ^ hash(fp)  // 异或
  • 在上列公式可以看出,h2的位置是根据h1的位置计算出来的,也就是说我们知道了其中一个位置,就可以直接获取到另外一个位置,不需要再做全量的hash运算。因为使用的异或运算,所以这两个位置具有对偶性。这也是提高查询效率的一个点。
    只要保证 hash(fp) !=0,那么就可以确保 h2!=h1,也就可以确保不会出现自己踢自己的死循环问题了。
  • 这里还有个注意点:就是hash运算的时候,并没有对值进行长度取模运算,那么他是如何保证计算出来hash坐标,一定是在数组长度范围内呢?这就说到布谷鸟过滤器的一个限制条件了,那就是强制数组的长度必须是 2 的指数倍
    这个限制带来的好处就是,进行异或运算时,可以保证计算出来的下标一定是落在数组中的。

布谷鸟过滤器对布隆过滤器的另一个优化点就是存储结构:

  • 布谷鸟过滤器的存储结构是每个坐标下的空位是多个,不同于布隆过滤器的一个空位。如下图所示:
    在这里插入图片描述 布谷鸟过滤器会记录每个元素的两个hash位置,每个位置下都会有多个空位,空位内存储的就是元素的“指纹信息”。
  • 布谷鸟过滤器添加元素的流程是这样的:
    布谷鸟过滤器会先计算出元素对应的指纹信息,然后对元素进行hash运算,计算出元素的第一个存储坐标,该坐标下存在四个空位,如果四个空位中有空闲的,就将该元素的指纹信息存进去;如果没有空位,就会根据指纹和第一个hash坐标进行异或运算,计算出第二个坐标,如果第二个坐标下有空位,就将该元素的指纹信息存进去;如果还没有空位,那么该元素就会随机将一个空位中的指纹信息挤出,然后自己存进去,被挤出的指纹信息会计算出自己的第二个坐标,然后判断是否有空位,重复上述操作,直到达到一个阀值,布谷鸟过滤器返回false或进行扩容处理。

流程如下所示:
在这里插入图片描述

数据Data想要存储到布谷鸟过滤器中,首先会计算出h1和h2两个存储坐标,结果发现两个坐标的空位都已经“满员”了,此时会随机挤掉一个元素的指纹信息,假设挤掉了h1坐标的指纹3,然后指纹3会找自己的第二个坐标,然后判断是否有空位,有空位就存到第二个坐标下,如下图:
在这里插入图片描述
扩容:如果数组过小,会发生循环挤兑的情况,就可以设置最大挤兑次数,如果超过该次数,进行扩容,重新计算每个指纹的位置。

当 hash 函数固定为 2 个的时候,如果一个下标只能放一个元素,那么空间利用率是 50%。如果为 2,4,8 个元素的时候,空间利用率分别是 84%,95%,98%,可以发现空间利用率飙升。

3.布隆过滤器的缺点

  • 删除不完美,存在误删的概率。删除的时候知识删除了一份指纹副本,并不能确定此指纹副本是要删除的key的指纹。同时这个问题也导致了假阳性的情况。
  • 插入复杂度比较高。随着插入元素的增多,复杂度会越来越高,因为存在桶满,踢出的操作,所以需要重新计算,但综合来讲复杂度还是常数级别。
  • 存储空间的大小必须为2的指数的限制让空间效率打了折扣。
  • 同一个元素最多插入kb次,(k指哈希函数的个数,b指的是坐标下能装指纹的个数也可以说是坐标下桶的尺寸大小)如果布谷鸟过滤器支持删除,则必须存储同一项的多个副本。 插入同一项kb+1次将导致插入失败。 这类似于计数布隆过滤器,其中重复插入会导致计数器溢出。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/350440.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

内核模块(传参和依赖)

目录 一、模块传参 二、模块依赖 三、内核空间和用户空间 四、执行流 五、模块编程与应用编程的比较 六、内核接口头文件查询 七、小作业 一、模块传参 module_param(name,type,perm);//将指定的全局变量设置成模块参数 name:全局变量名 type: 使用符号 …

MFC消息机制

1.消息映射消息映射是一个将消息和成员函数相互关联的表。比如,框架窗口接收到一个鼠标左击消息,MFC将搜索该窗口的消息映射,如果存在一个处理WM_LBUTTTONDOWN消息的处理程序,然后就调用OnButtonDown。2.消息映射机制2.1 声明宏 写…

教务查询系统简介

教务查询系统简介 项目核心代码展示 service层如下: Teacher老师Service层: public interface TeacherService {//根据id更新老师信息void updateById(Integer id, TeacherCustom teacherCustom) throws Exception;//根据id删除老师信息void removeB…

SheetJS的通用电子表格对象简介和使用

简言 “通用电子表格格式”&#xff08;CSF&#xff09;是SheetJS使用的对象模型。 例如使用xlsx插件时&#xff0c;获得的excel文件数据对象就是依据这个模型设计的。 SheetJs通用电子表格对象 介绍 cdn导入&#xff1a; <script lang"javascript" src"ht…

uprobe 实战

观测数据源 目前按照我的理解&#xff0c;和trace相关的常用数据源–探针 大致分为四类。 内核 Trace point kprobe 用户程序 USDT uprobe 在用户程序中&#xff0c;USDT是所谓的静态Tracepoint。和内核代码中的Trace point类似。实现方式是在代码开发时&#xff0c;使用USDT…

Visual Studio开启clang-tidy代码检查

在CLion中有针对C的静态代码检查工具clang-tidy&#xff0c;感觉非常好用&#xff0c;能养成好的编码习惯&#xff0c;后来写Qt转入了VS平台&#xff0c;想要继续使用功能一致的clang-tidy体验&#xff0c;所以研究出来在VS中开启clang-tidy的方法。 版本&#xff1a;Visual S…

XML 基础知识 XXE 漏洞原理解析及实验(基础篇)

XML 介绍 XXE全称XML外部实体注入&#xff0c;所以在介绍XXE漏洞之前&#xff0c;先来说一说什么是XML以及为什么使用XML进而再介绍一下XML的结构。 XML全称 可拓展标记语言&#xff0c;与HTML相互配合后&#xff1a; HMTL用来显示数据 HTML的焦点在于数据的外观&#xff08;…

双网卡(有线和wifi)同时连接内网和外网

双网卡&#xff08;有线和wifi&#xff09;同时连接内网和外网 Win10技巧&#xff1a;如何修改有线/WiFi网络优先级&#xff1a;https://www.ithome.com/html/win10/253612.htm双网卡实现两个网络的自由访问&#xff1a;https://blog.51cto.com/ghostlan/1299090Linux服务器安…

【Linux】网络编程 - 基础概念

目录 一.OSI七层模型vsTCP/IP五层模型 1.一些周边概念 2.OSI七层模型 3.TCP/IP五层模型 4.网络传输流程图 二.什么是MAC地址 三.什么是IP/IP地址 1.什么是IP 2.什么是IP地址 四.什么是端口号 一.OSI七层模型vsTCP/IP五层模型 1.一些周边概念 局域网vs广域网 网络互…

LeetCode——2341. 数组能形成多少数对

一、题目 给你一个下标从 0 开始的整数数组 nums 。在一步操作中&#xff0c;你可以执行以下步骤&#xff1a; 从 nums 选出 两个 相等的 整数 从 nums 中移除这两个整数&#xff0c;形成一个 数对 请你在 nums 上多次执行此操作直到无法继续执行。 返回一个下标从 0 开始、…

亚马逊云科技重磅发布《亚马逊云科技汽车行业解决方案》

当今&#xff0c;随着万物智联、云计算等领域的高速发展&#xff0c;创新智能网联汽车和车路协同技术正在成为车企加速发展的关键途径&#xff0c;推动着汽车产品从出行代步工具向着“超级智能移动终端”快速转变。挑战无处不在&#xff0c;如何抢先预判&#xff1f;随着近年来…

31-Golang中的二维数组

二维数组的使用方式 使用方式一&#xff1a;先声明/定义再赋值 1.语法&#xff1a;var数组名 [大小] [大小]类型2.比如&#xff1a;var arr [2] [3]int,再赋值 package main import ("fmt" )func main() {//定义/声明数组var arr [4][6]int//赋初值arr[1][2] 1ar…

volatile,内存屏障

volatile的特性可见性: 对于其他线程是可见,假设线程1修改了volatile修饰的变量,那么线程2是可见的,并且是线程安全的重排序: 由于CPU执行的时候,指令在后面的会先执行,在指令层级的时候我们晓得volatile的特性后,我们就要去volatile是如何实现的,这个很重要&#xff01;&#…

金三银四面试必备的软件测试八股文,看完拿捏面试官

1、问&#xff1a;你在测试中发现了一个 bug&#xff0c;但是开发经理认为这不是一个 bug&#xff0c;你应该怎样解决&#xff1f;首先&#xff0c;将问题提交到缺陷管理库里面进行备案。然后&#xff0c;要获取判断的依据和标准&#xff1a; 根据需求说明书、产品说明、设计文…

蓝屏怎么办电脑蓝屏怎么办?蓝屏问题详细分析

蓝屏怎么办电脑蓝屏怎么办&#xff1f;最近很多小伙伴在咨询这个问题&#xff0c;其实电脑蓝屏了进不去&#xff0c;我们可以重新启动电脑&#xff0c;如果进入系统后还是直接蓝屏&#xff0c;那么你可以尝试一下&#xff0c;关机重启&#xff0c;然后在进入系统的时候&#xf…

路肩石水渠机在施工公路项目中工艺特点的匹配

新建公路路肩项目在目前公路项目中的技术手段和实现方式,大多数依靠机械设备来机械来进行,还有一部分通过人工传统的预制作业和安装模式来进行,两种工艺特点的对比来说对于补充完善建设手段和效果实现有很重要的意义. 其中采用了机械设备进行一次成型制作的过程,按照设计需求匹…

useRef 几种使用场景

图修改自 dev.to Demystifying React Hooks: useRef useRef神奇的地方除了可以在不重新渲染的状态下更有价值,也可以直接获取D加粗样式OM 进入而控制DOM的行为 Ref 有什么用? useRef返回一个可变的 ref 对象,其 .current 属性被初始化为传递的参数 ( initialValue)。返回…

常用vim命令和vim基本使用及Linux用户的管理,用户和组相关文件

常用vim命令和vim基本使用及Linux用户的管理&#xff0c;用户和组相关文件1. vim 的基本介绍和使用1.1 vim的三种模式1.2 常用vim命令【小白】1.3 Vim键盘图&#xff1a;2. Linux用户管理2.1 添加用户2.2 删除用户2.3 修改账号3. Linux系统用户组的管理4. 用户和组相关文件4.1 …

RuoYi-Vue部署(Nginx+Tomcat)

环境搭建RuoYi-Vue搭建、Linux安装Nginx、Linux安装JDK8、Linux安装MySql8、Linux安装Redis、Linux安装Tomcat9前端打包 1.ruoyi-ui鼠标右键-->打开于终端2.安装依赖&#xff1a;npm install --registryhttps://registry.npm.taobao.org-->node_modules3.编译打包&#x…

中国天气——西风带环流和寒潮

中国天气——西风带环流和寒潮 一. 西风环流概述 1. 概念 西风带&#xff1a;中高纬度地区平均水平环流在对流层盛行西风&#xff0c;称之为西风带西风带波动&#xff1a;西风带围绕极涡沿纬圈运动&#xff0c;平均而言表现为冬季三槽三脊&#xff0c;夏季四槽四脊&#xff…