电压放大器在液滴微流控芯片的功能研究中的应用

news2024/11/29 6:32:11

  实验名称:电压放大器在液滴微流控芯片的功能研究中的应用

  研究方向:微流控生物芯片

  测试目的:

  液滴微流控技术能够在微通道内实现液滴生成,精准控制生成液滴的尺寸以及生成频率。结合芯片结构设计和外部控制条件,可以对液滴进行多样化的操控,以满足不同研究和应用场景需求。在生物医学领域,液滴具有广泛的应用价值,可以视为一个独立的微反应器,具有微纳尺度体积,容易高通量操作,非常适用于大样本下的生化检测和分析。

  本文使用液滴微流控技术作为操控反应液体组分,构建功能微结构的一种方法。通过微流控芯片操作平台、控制方法设计,分别研究了可用作药物载体的聚乙烯醇微球和用于生物传感分析的4-氰基-4'-戊基联苯(4-Cyano-4'-n-pentylbiphenyl,5CB)液晶液滴传感阵列的制备。针对不同材料特性和应用需求,探索、优化了液滴(阵列)操作方法。在此基础上,开展了相关应用研究,如实验分析了液晶液滴阵列在不同控制条件下的检测能力。

  测试设备:ATA-2042电压放大器、信号发生器、芯片、驱动泵、偏光显微镜、相机等。

  实验过程:

  首先使用液滴制备芯片制备液晶液滴,再通过流动运送的方式将液滴输送并捕获固定到液晶液滴捕获芯片的阵列结构中,然后基于此液晶液滴阵列结构芯片开展电调控研究。

  图:试验系统(a)聚焦流芯片;(b)液晶液滴阵列电调控芯片;(c)搭建完成的实验系统(d)通道中的阵列结构

  液晶液滴制备芯片由PDMS结构层与洁净玻片的键合后完成,如上图(a)所示。对于阵列固定芯片,PDMS芯片结构和ITO电极加工完成后,需要将两部分键合成完整的芯片。将两者等离子清洗处理3min,根据标记位点进行结构的对准,PDMS的阵列固定结构区域需完全位于基底ITO玻璃上的两电极之间(如上图(d))。由于ITO电极的玻璃基底上存在ITO层,对键合的牢固程度造成了一定的影响,在键合完成后将芯片置于热板上加热并使用重物重压1~2h,以增加键合的牢固程度。键合之后的芯片在导管孔插入导管并用PDMS混合胶体封合,在电极的导电胶带粘合点贴上导电胶带,芯片实物图如上图(b)所示。驱动泵上固定的注射器通过针头连接到芯片的导管上,芯片置于显微镜的观察视野下;信号发生器的输出端口通过导线连接到电压放大器的输入端口,信号放大器的输出端口通过导线夹子夹到贴在芯片电极上的导电胶带上,使用胶带将导线夹子和芯片固定在载物台上,防止实验过程中发生移动而干扰实验现象的观察和记录;最后将相机接到显微镜上的外接接口。搭建完成后的系统如上图(c)所示。

  液晶液滴制备芯片的亲水改性处理,生成的液滴结果如下图(a)和下图(b)所示。液晶液滴的固定是负向压力驱动的,将驱动泵的模式设置为抽取进样,流量设置为200μL/h。液滴被固定并填充整个捕获阵列后(下图(c)),用移液枪将加样槽中剩余的液晶液滴吸取并移除,过程中需用SDS溶液冲洗3~5次。多余的液滴移除后降低进样流量为3μL/h,输入PBS缓冲液,持续低流量抽取10min,稳定捕获腔室中的液晶液滴的构像状态(下图(d))。

  图:液晶液滴制备

  阵列中液晶液滴构像稳定后,给芯片电极施加电信号。信号发生器的输出波形为正弦波,电压放大器的放大倍数设置为50倍,调节信号发生器的幅值和频率,电信号的幅值从1~观察并记录液滴的构像变化情况。探究液晶液滴构像与电信号参数之间的关系。

  实验结果:

  图:(液晶液滴状态)当没有施加电场的情况下,液晶液滴呈中心径向对称(a),偏光显微镜下的构象是十字结构(c);当电场强度为0.25V/μm时(50KHz),液晶液滴呈轴对称,缺陷沿对称轴发生偏移(b),偏光显微镜下图像(d)

  液晶液滴在电场的作用下会发生构像转变。液晶液滴被捕获后,降低进样流速,液晶液滴受流速的影响减弱,在锚定能的作用下回复到中心缺陷的十字构象。打开信号发生器和电压放大器,沿流动的主通道方向在通道内形成电场。在初始电场E=0时,表面活性剂SDS在液晶液滴表面吸附并形成一定的锚定能,此时液晶分子在液滴内呈放射状排列(示意图如上图(a)所示),缺陷位于几何中心点位置,偏振光下液晶呈十字构象(上图(c))。

  当施加电场后,液晶液滴的自由能由表面锚定能、弹性自由能和电场能三部分构成。当电压幅值过低时,电场能的作用不足以影响由表面锚定能和弹性自由能占主导的液晶液滴的自由能,液滴会维持之前的未加电的状态,即构象基本不发生变化。随着电压幅值的增大,电场作用开始发挥作用,影响液晶液滴的自由能,但仍要克服表面锚定能和弹性自由能的作用,因此会发生中心缺陷的偏移。上图(b)为当信号发生器电压幅值为9Vp~p时,通道内电场强度为0.25V/μm(计算:电压幅值9×50倍电压放大倍数,除以电极间距1800μm),此时液滴的缺陷偏移中心,并向构象对称轴的一端靠近,成逃逸径向配置,液晶液滴的偏光显微图片如上图(d)所示。

  ITO电极与通道内的溶液接触,在低频的条件下容易发生电解,本文的研究中使用的电信号频率选择大于等于1KHz。电压幅值为5Vp~p,通电时间20s。电信号频率分别设置为1KHz、10KHz、50KHz、100KHz、500KHz、1MHz,不同的频率下,液晶液滴的响应不同,液晶液滴的取向偏移随着频率的增大而增加(下图(a~f)),偏移距离与电压幅值的对应关系如下图(g)所示。

  图:(a~f)不同频率下,液晶液滴的变化情况。图中标尺为50μm。(g)缺陷偏离圆心的距离与液滴半径比值的百分占比随电压频率的变化

  根据德拜方程,电场的频率会间接影响液晶液滴分子在电场中的介电常数分量,介电常数的变化主要反映了液晶内部指向矢的取向顺序变化以及对称性的变化。频率的变化最终体现在电场作用下液晶液滴内部缺陷的偏移。另外,根据漏电介质模型(描述液滴在不相溶介质中受电场作用时行为的模型),液滴和介质的交界面上存在有限的电荷密度,在外加电场的作用下,这些表面电荷与外加电场的相互作用产生了电动效应,最终导致与液滴表面平行的流体运动。液滴和不相溶溶液这两种介质的电导率、粘度和介电常数是不同的,造成液滴上下的流动方向或是向外或向内,存在方向上的差异。频率的大小影响液晶分子发生偏转的角度,从而引起了液晶液滴的偏转。

  安泰ATA-2042高压放大器:

  图:ATA-2042高压放大器指标参数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/344825.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

内网渗透(二十六)之Windows协议认证和密码抓取-浏览器、数据库等其他密码的抓取

系列文章第一章节之基础知识篇 内网渗透(一)之基础知识-内网渗透介绍和概述 内网渗透(二)之基础知识-工作组介绍 内网渗透(三)之基础知识-域环境的介绍和优点 内网渗透(四)之基础知识-搭建域环境 内网渗透(五)之基础知识-Active Directory活动目录介绍和使用 内网渗透(六)之基…

电子招标采购系统源码之为何推荐电子招采

采购类型多 采购制度:采购金额、部门、品类的差异导致管理标准不同。 采购流程:从供应商管理、寻源操作到合同签订、订单执行,业务流程长,审批节点多,传统管理透明度低,联动性差。 供应商管理难 寻源&#…

【SpringBoot3.0源码】启动流程源码解析 •下

文章目录初始化DefaultBootstrapContext开启Headless模式获取监听器并启动封装命令行参数准备环境打印Banner创建上下文容器预初始化上下文容器刷新Spring容器打印启动时间发布事件执行特定的run方法上一篇《【SpringBoot3.0源码】启动流程源码解析 • 上》,主要讲解…

机械革命z2黑苹果改造计划第二番-MacOS实用软件渗透工具

机械革命z2黑苹果改造计划第二番-实用软件 Mac实用工具 这是旧电脑改造计划的第二篇,就是安装一些常用软件和一些渗透测试工具,武装灵魂成为真正的生产力工具 首先推荐一个网站,www.mactools.app,这个软件里边有大多数常用的软…

Unity中画2D图表(2)——用XChart包绘制散点分布图 + 一条直线方程

散点图用于显示关系。 对于 【相关性】 ,散点图有助于显示两个变量之间线性关系的强度。 对于 【回归】 ,散点图常常会添加拟合线。 举例1:你可以展示【年降雨量】与【玉米亩产量】的关系 举例2:你也可以分析各个【节假日】与【大…

减轻供应商风险的3个有效策略

每个企业都面临供应商风险,即由第三方引起的事件的可能性,这些事件可能或将对其运营提出挑战。管理供应商风险意味着提前识别可能出现的问题并制定计划来管理或减轻这些事件甚至供应商关系。本文总结了3个减轻供应商风险的策略。 1、使你的供应商基础多样…

金三银四丨黑蛋老师带你剖析-漏洞岗

作者丨黑蛋病毒岗之前我们简单看了看二进制逆向岗位和漏洞岗,今天我们来看一看病毒岗位,就单纯看二进制病毒岗位和漏洞岗位,其所需要的基础知识是差不多的,在Windows平台上,无非就是汇编,C语言,…

Jetson NX2 装机过程

1.固态硬盘安装完成后,系统配置 df -h 查看硬盘使用情况 2.查看Jetson NX的IP地址,以下两个都行 ifconfig ip address show 3.Jetson NX2安装arm64的annaconda3,安装有问题报错illegal instruction,未解决。 4.VNC远程登录 …

nginx负载均衡下的webshell上传

目录 场景描述 环境的安装 1、先将docker环境搭建起来 2、测试tomcat是否可以访问 3、查看docker中nginx反向代理的负载均衡 4、查看docker中lbsnode1中的ant.jsp文件 5、通过中国蚁剑来连接ant.jsp文件 复现过程 存在的问题 问题一:由于nginx采用的反向代…

初识WebRTC(Web Real-Time Communication)网络实时通信

W3C提供的WebRTC API 英文API:http://www.w3.org/TR/webrtc/(个人建议看英文版) 中文API:http://www.iwebrtc.com/blog/webrtc1-0/(old版) 三个主要API: MediaStream:获取音视频…

C++——继承和多态常见的面试问题

目录1. 继承和多态常见的面试问题1.1 概念查考1.2 问答题1.什么是多态?2.什么是重载、重写(覆盖)、重定义(隐藏)?3.多态的实现原理?4.inline函数可以是虚函数吗?5.静态成员可以是虚函数吗?6.构造函数可以是虚函数吗&am…

国产低功耗Soc蓝牙语音遥控器芯片HS6621 指纹锁、体脂称等应用方案

随着物联网技术不断发展,家用电器往智能化方向持续迭代,使用红外遥控器这种传统的互动方式已经满足不了实际的使用需求,蓝牙语音遥控器作为人机交互新载体,逐渐取代传统红外遥控器成为家居设备的标配。 相比于传统红外遥控器&…

C语言(数组和指针存储字符串)

目录 一.数组和指针 1.字符串数组和字符数组区别 2.数组存储字符串常量 3.指针存储字符串 二.数组和指针的区别 1.常量和变量 2.修改成本 3.存储成本 一.数组和指针 1.字符串数组和字符数组区别 char ch[]"hello world",末尾存储着\0,就是字符…

RabbitMQ工作模式

目录1.Work queues工作队列模式1.1 模式说明1.2 代码1.3 测试1.4 小结2.订阅模式类型3.Publish/Subscribe发布与订阅模式3.1 模式说明3.2 代码3.3 测试3.4 小结4.Routing路由模式4.1 模式说明4.2 代码4.3 测试4.4 小结5.Topics通配符模式5.1 模式说明5.2 代码5.3 测试5.4 小结6…

使用crontab执行定时任务

本来这个东西是挺简单的,是我脑子一直没转过来弯,我就想看看有多少人跟我一样😏 crontab语法自己去菜鸟教程看看就知道了,没什么难度 需求:每分钟定时执行一个PHP文件或者一个PHP命令 这是需要执行的文件&#xff0…

《Redis实战篇》七、Redis消息队列

7.1 Redis消息队列-认识消息队列 什么是消息队列:字面意思就是存放消息的队列。最简单的消息队列模型包括3个角色: 消息队列:存储和管理消息,也被称为消息代理(Message Broker)生产者:发送消息…

JAVA锁相关的概念和分类

JAVA对象和对象头 java中object对象一般由对象头、示例数据、填充字节三部分组成其中填充字节是为了补全对象大小为8bit的倍数而存在,没太多功能性要求对象头包括mark word和class point class point存放的是指向堆中数据类型的指针mark word是存储了许多和当前对象…

Linux配置和使用Git

本文已收录至《Linux知识与编程》专栏! 作者:ARMCSKGT 演示环境:CentOS 7 ​ 目录 前言 正文 注册Giett构建仓库 注册giett 构建仓库 Linux配置Git 下载Git 配置Git用户名 配置Git账户邮箱 验证是否初始化成功 生成授权证书 获…

重新认识 React Hooks useContext

通常来说,React 数据的传递方式都是一层一层把资料 props 传到子层的 就算第二层(Function Component)、第三层(Button Group Compontn) 根本没有用到这个资料,但是为了传到最底层(button) ,每一层还是必须要传props // App.js const App = () => {const [dark, setDark…

vue3:加载本地图片等静态资源

背景 在我们用 vue2 webpack 的时候&#xff0c;加载图片资源是这样用的&#xff1a; <img :src"require(/assets/test.png)" />这样打包后就会触发 file-loader 打包图片资源&#xff0c;在 dist 文件夹中就可以看到这个图片&#xff08;如果图片较小会打包…