一篇文章带你读懂HashMap

news2024/12/23 12:50:07

HashMap是面试中经常问到的一个知识点,也是判断一个候选人基础是否扎实的标准之一。可见HashMap的掌握是多重要。

一、HashMap源码分析

1、构造函数

让我们先从构造函数说起,HashMap有四个构造方法,别慌

1.1  HashMap()

    // 1.无参构造方法、
    // 构造一个空的HashMap,初始容量为16,负载因子为0.75
    public HashMap() {        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

无参构造方法就没什么好说的了。

1.2 HashMap(int initialCapacity)

    // 2.构造一个初始容量为initialCapacity,负载因子为0.75的空的HashMap,
    public HashMap(int initialCapacity) {        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

HashMap(int initialCapacity) 这个构造方法调用了1.3中的构造方法。

1.3 HashMap(int initialCapacity, float loadFactor)

    // 3.构造一个空的初始容量为initialCapacity,负载因子为loadFactor的HashMap
    public HashMap(int initialCapacity, float loadFactor) {        if (initialCapacity < 0)            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;        if (loadFactor <= 0 || Float.isNaN(loadFactor))            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);        this.loadFactor = loadFactor;        this.threshold = tableSizeFor(initialCapacity);
    }    //最大容量
    //static final int MAXIMUM_CAPACITY = 1 << 30;

当指定的初始容量< 0时抛出IllegalArgumentException异常,当指定的初始容量> MAXIMUM_CAPACITY时,就让初始容量 = MAXIMUM_CAPACITY。当负载因子小于0或者不是数字时,抛出IllegalArgumentException异常

设定threshold。 这个threshold = capacity * load factor 。当HashMap的size到了threshold时,就要进行resize,也就是扩容。

tableSizeFor()的主要功能是返回一个比给定整数大且最接近的2的幂次方整数,如给定10,返回2的4次方16.

我们进入tableSizeFor(int cap)的源码中看看:

    //Returns a power of two size for the given target capacity.
    static final int tableSizeFor(int cap) {        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

note: HashMap要求容量必须是2的幂。

首先,int n = cap -1是为了防止cap已经是2的幂时,执行完后面的几条无符号右移操作之后,返回的capacity是这个cap的2倍,因为cap已经是2的幂了,就已经满足条件了。 如果不懂可以往下看完几个无符号移位后再回来看。(建议自己在纸上画一下)

  • 如果n这时为0了(经过了cap-1之后),则经过后面的几次无符号右移依然是0,最后返回的capacity是1(最后有个n+1的操作)。这里只讨论n不等于0的情况。

以16位为例,假设开始时 n 为 0000 1xxx xxxx xxxx  (x代表不关心0还是1)

  • 第一次右移 n |= n >>> 1;

    由于n不等于0,则n的二进制表示中总会有一bit为1,这时考虑最高位的1。通过无符号右移1位,则将最高位的1右移了1位,再做或操作,使得n的二进制表示中与最高位的1紧邻的右边一位也为1,如0000 11xx xxxx xxxx 。

  • 第二次右移 n |= n >>> 2;

    注意,这个n已经经过了n |= n >>> 1; 操作。此时n为0000 11xx xxxx xxxx ,则n无符号右移两位,会将最高位两个连续的1右移两位,然后再与原来的n做或操作,这样n的二进制表示的高位中会有4个连续的1。如0000 1111 xxxx xxxx 。

  • 第三次右移 n |= n >>> 4;

    这次把已经有的高位中的连续的4个1,右移4位,再做或操作,这样n的二进制表示的高位中会有8个连续的1。如0000 1111 1111 xxxx 。

第。。。,你还忍心让我继续推么?相信聪明的你已经想出来了,容量最大也就是32位的正数,所以最后一次     n |= n >>> 16; 可以保证最高位后面的全部置为1。当然如果是32个1的话,此时超出了MAXIMUM_CAPACITY ,所以取值到 MAXIMUM_CAPACITY

这里我从别人的文章当一个别人的图片,懒得画了

tableSizeFor示例图

 

注意,得到的这个capacity却被赋值给了threshold。 这里我和这篇博客的博主开始的想法一样,认为应该这么写:this.threshold = tableSizeFor(initialCapacity) * this.loadFactor;  因为这样子才符合threshold的定义:threshold = capacity * load factor  。但是,请注意,在构造方法中,并没有对table这个成员变量进行初始化,table的初始化被推迟到了put方法中,在put方法中会对threshold重新计算 。

我说一下我在理解这个tableSizeFor函数中间遇到的坑吧,我在想如果n=-1时的情况,因为初始容量可以传进来0。我将n= -1 和下面几条运算一起新写了个测试程序,发现输出都是 -1。 这是因为计算机中数字是由补码存储的,-1的补码是 0xffffffff。所以无符号右移之后再进行或运算之后还是 -1。 那我想如果就无符号右移呢? 比如-1>>>10。听我娓娓道来,32个1无符号右移10位后,高10位为0,低22位为1,此时这个数变成了正数,由于正数的补码和原码相同,所以就变成了0x3FFFFF即10进制的4194303。真刺激。

好开森,这个构造方法我们算是拿下了。怎么样,我猜你现在一定很激动,Hey,old  Fe,这才刚开始。接下来看最后一个构造方法。

1.4 HashMap(Map<? extends K, ? extends V> m)

    // 4. 构造一个和指定Map有相同mappings的HashMap,初始容量能充足的容下指定的Map,负载因子为0.75
    public HashMap(Map<? extends K, ? extends V> m) {        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

套路,直接看 putMapEntries(m,false) 。源码如下:

    
    /**
     * 将m的所有元素存入本HashMap实例中
     */
    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {        //得到 m 中元素的个数
        int s = m.size();        //当 m 中有元素时,则需将map中元素放入本HashMap实例。
        if (s > 0) {            // 判断table是否已经初始化,如果未初始化,则先初始化一些变量。(table初始化是在put时)
            if (table == null) { // pre-size
                // 根据待插入的map 的 size 计算要创建的 HashMap 的容量。
                float ft = ((float)s / loadFactor) + 1.0F;                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                         (int)ft : MAXIMUM_CAPACITY);                // 把要创建的 HashMap 的容量存在 threshold 中
                if (t > threshold)
                    threshold = tableSizeFor(t);
            }            // 如果table初始化过,因为别的函数也会调用它,所以有可能HashMap已经被初始化过了。
            // 判断待插入的 map 的 size,若 size 大于 threshold,则先进行 resize(),进行扩容
            else if (s > threshold)
                resize();            //然后就开始遍历 带插入的 map ,将每一个 <Key ,Value> 插入到本HashMap实例。
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();                // put(K,V)也是调用 putVal 函数进行元素的插入
                putVal(hash(key), key, value, false, evict);
            }
        }
    }

介绍putVal方法前,说一下HashMap的几个重要的成员变量:

    /**
     * The table, initialized on first use, and resized as
     * necessary. When allocated, length is always a power of two.
     * (We also tolerate length zero in some operations to allow
     * bootstrapping mechanics that are currently not needed.)
     */
    //实际存储key,value的数组,只不过key,value被封装成Node了
    transient Node<K,V>[] table;    /**
     * The number of key-value mappings contained in this map.
     */
    transient int size;    /**
     * The number of times this HashMap has been structurally modified
     * Structural modifications are those that change the number of mappings in
     * the HashMap or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the HashMap fail-fast.  (See ConcurrentModificationException).
     */
    transient int modCount;    /**
     * The next size value at which to resize (capacity * load factor).
     *
     * @serial
     */
    // (The javadoc description is true upon serialization.
    // Additionally, if the table array has not been allocated, this
    // field holds the initial array capacity, or zero signifying
    // DEFAULT_INITIAL_CAPACITY.)
    //因为 tableSizeFor(int) 返回值给了threshold
    int threshold;    /**
     * The load factor for the hash table.
     *
     * @serial
     */
    final float loadFactor;

其实就是哈希表。HashMap使用链表法避免哈希冲突(相同hash值),当链表长度大于TREEIFY_THRESHOLD(默认为8)时,将链表转换为红黑树,当然小于UNTREEIFY_THRESHOLD(默认为6)时,又会转回链表以达到性能均衡。 我们看一张HashMap的数据结构(数组+链表+红黑树 )就更能理解table了:

HashMap的数据结构

再回到putMapEntries函数中,如果table为null,那么这时就设置合适的threshold,如果不为空并且指定的map的size>threshold,那么就resize()。然后把指定的map的所有Key,Value,通过putVal添加到我们创建的新的map中。

putVal中传入了个hash(key),那我们就先来看看hash(key):

/**
     * key 的 hash值的计算是通过hashCode()的高16位异或低16位实现的:(h = k.hashCode()) ^ (h >>> 16)
     * 主要是从速度、功效、质量来考虑的,这么做可以在数组table的length比较小的时候
     * 也能保证考虑到高低Bit都参与到Hash的计算中,同时不会有太大的开销
     */
    static final int hash(Object key) {        int h;        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

异或运算:(h = key.hashCode()) ^ (h >>> 16)

原 来 的 hashCode : 1111 1111 1111 1111 0100 1100 0000 1010
移位后的hashCode: 0000 0000 0000 0000 1111 1111 1111 1111
进行异或运算 结果:1111 1111 1111 1111 1011 0011 1111 0101

这样做的好处是,可以将hashcode高位和低位的值进行混合做异或运算,而且混合后,低位的信息中加入了高位的信息,这样高位的信息被变相的保留了下来。掺杂的元素多了,那么生成的hash值的随机性会增大。

刚才我们漏掉了resize()putVal() 两个函数,现在我们按顺序分析一波:

首先resize() ,先看一下哪些函数调用了resize(),从而在整体上有个概念:

调用了resize的函数

 

接下来上源码:

    final Node<K,V>[] resize() {        // 保存当前table
        Node<K,V>[] oldTab = table;        // 保存当前table的容量
        int oldCap = (oldTab == null) ? 0 : oldTab.length;        // 保存当前阈值
        int oldThr = threshold;        // 初始化新的table容量和阈值 
        int newCap, newThr = 0;        /*
        1. resize()函数在size > threshold时被调用。oldCap大于 0 代表原来的 table 表非空,
           oldCap 为原表的大小,oldThr(threshold) 为 oldCap × load_factor
        */
        if (oldCap > 0) {            // 若旧table容量已超过最大容量,更新阈值为Integer.MAX_VALUE(最大整形值),这样以后就不会自动扩容了。
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;                return oldTab;
            }             // 容量翻倍,使用左移,效率更高
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)                // 阈值翻倍
                newThr = oldThr << 1; // double threshold
        }        /*
        2. resize()函数在table为空被调用。oldCap 小于等于 0 且 oldThr 大于0,代表用户创建了一个 HashMap,但是使用的构造函数为      
           HashMap(int initialCapacity, float loadFactor) 或 HashMap(int initialCapacity)
           或 HashMap(Map<? extends K, ? extends V> m),导致 oldTab 为 null,oldCap 为0, oldThr 为用户指定的 HashMap的初始容量。
      */
        else if (oldThr > 0) // initial capacity was placed in threshold
            //当table没初始化时,threshold持有初始容量。还记得threshold = tableSizeFor(t)么;
            newCap = oldThr;        /*
        3. resize()函数在table为空被调用。oldCap 小于等于 0 且 oldThr 等于0,用户调用 HashMap()构造函数创建的 HashMap,所有值均采用默认值,oldTab(Table)表为空,oldCap为0,oldThr等于0,
        */
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }        // 新阈值为0
        if (newThr == 0) {            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;        @SuppressWarnings({"rawtypes","unchecked"})        // 初始化table
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;        if (oldTab != null) {            // 把 oldTab 中的节点 reHash 到 newTab 中去
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;                    // 若节点是单个节点,直接在 newTab 中进行重定位
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;                    // 若节点是 TreeNode 节点,要进行 红黑树的 rehash 操作
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);                    // 若是链表,进行链表的 rehash 操作
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;                        // 将同一桶中的元素根据(e.hash & oldCap)是否为0进行分割(代码后有图解,可以回过头再来看),分成两个不同的链表,完成rehash
                        do {
                            next = e.next;                            // 根据算法 e.hash & oldCap 判断节点位置rehash 后是否发生改变
                            //最高位==0,这是索引不变的链表。
                            if ((e.hash & oldCap) == 0) { 
                                if (loTail == null)
                                    loHead = e;                                else
                                    loTail.next = e;
                                loTail = e;
                            }                            //最高位==1 (这是索引发生改变的链表)
                            else {  
                                if (hiTail == null)
                                    hiHead = e;                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);                        if (loTail != null) {  // 原bucket位置的尾指针不为空(即还有node)  
                            loTail.next = null; // 链表最后得有个null
                            newTab[j] = loHead; // 链表头指针放在新桶的相同下标(j)处
                        }                        if (hiTail != null) {
                            hiTail.next = null;                            // rehash 后节点新的位置一定为原来基础上加上 oldCap,具体解释看下图
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }        return newTab;
    }
}

引自美团点评技术博客。我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。看下图可以明白这句话的意思,n为table的长度,图(a)表示扩容前的key1和key2两种key确定索引位置的示例,图(b)表示扩容后key1和key2两种key确定索引位置的示例,其中hash1是key1对应的哈希与高位运算结果。

hashMap 1.8 哈希算法例图1

 

元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:

hashMap 1.8 哈希算法例图2

 

因此,我们在扩充HashMap的时候,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”,可以看看下图为16扩充为32的resize示意图 :

jdk1.8 hashMap扩容例图

 

什么时候扩容:通过HashMap源码可以看到是在put操作时,即向容器中添加元素时,判断当前容器中元素的个数是否达到阈值(当前数组长度乘以加载因子的值)的时候,就要自动扩容了。

扩容(resize):其实就是重新计算容量;而这个扩容是计算出所需容器的大小之后重新定义一个新的容器,将原来容器中的元素放入其中。

resize()告一段落,接下来看 putVal()

上源码:

 
   //实现put和相关方法。
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;        //如果table为空或者长度为0,则resize()
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;        //确定插入table的位置,算法是(n - 1) & hash,在n为2的幂时,相当于取摸操作。
        找到key值对应的槽并且是第一个,直接加入
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);        //在table的i位置发生碰撞,有两种情况,1、key值是一样的,替换value值,
        //2、key值不一样的有两种处理方式:2.1、存储在i位置的链表;2.2、存储在红黑树中
        else {
            Node<K,V> e; K k;            //第一个node的hash值即为要加入元素的hash
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;            //2.2
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);            //2.1
            else {                //不是TreeNode,即为链表,遍历链表
                for (int binCount = 0; ; ++binCount) {                ///链表的尾端也没有找到key值相同的节点,则生成一个新的Node,
                //并且判断链表的节点个数是不是到达转换成红黑树的上界达到,则转换成红黑树。
                    if ((e = p.next) == null) {                         // 创建链表节点并插入尾部
                        p.next = newNode(hash, key, value, null);                        超过了链表的设置长度8就转换成红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);                        break;
                    }                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))                        break;
                    p = e;
                }
            }            //如果e不为空就替换旧的oldValue值
            if (e != null) { // existing mapping for key
                V oldValue = e.value;                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);                return oldValue;
            }
        }
        ++modCount;        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);        return null;
    }

注:hash 冲突发生的几种情况:
1.两节点key 值相同(hash值一定相同),导致冲突;
2.两节点key 值不同,由于 hash 函数的局限性导致hash 值相同,冲突;
3.两节点key 值不同,hash 值不同,但 hash 值对数组长度取模后相同,冲突;

相比put方法,get方法就比较简单,这里就不说了。

1.7和1.8的HashMap的不同点

(1)JDK1.7用的是头插法,而JDK1.8及之后使用的都是尾插法,那么为什么要这样做呢?因为JDK1.7是用单链表进行的纵向延伸,当采用头插法就是能够提高插入的效率,但是也会容易出现逆序且环形链表死循环问题。但是在JDK1.8之后是因为加入了红黑树使用尾插法,能够避免出现逆序且链表死循环的问题。

(2)扩容后数据存储位置的计算方式也不一样:

  1. 在JDK1.7的时候是直接用hash值和需要扩容的二进制数进行&(这里就是为什么扩容的时候为啥一定必须是2的多少次幂的原因所在,因为如果只有2的n次幂的情况时最后一位二进制数才一定是1,这样能最大程度减少hash碰撞)(hash值 & length-1) 。

  2. 而在JDK1.8的时候直接用了JDK1.7的时候计算的规律,也就是扩容前的原始位置+扩容的大小值=JDK1.8的计算方式,而不再是JDK1.7的那种异或的方法。但是这种方式就相当于只需要判断Hash值的新增参与运算的位是0还是1就直接迅速计算出了扩容后的储存方式。

(3)JDK1.7的时候使用的是数组+ 单链表的数据结构。但是在JDK1.8及之后时,使用的是数组+链表+红黑树的数据结构(当链表的深度达到8的时候,也就是默认阈值,就会自动扩容把链表转成红黑树的数据结构来把时间复杂度从O(N)变成O(logN)提高了效率)。

HashMap为什么是线程不安全的?

HashMap 在并发时可能出现的问题主要是两方面:

  1. put的时候导致的多线程数据不一致
    比如有两个线程A和B,首先A希望插入一个key-value对到HashMap中,首先计算记录所要落到的 hash桶的索引坐标,然后获取到该桶里面的链表头结点,此时线程A的时间片用完了,而此时线程B被调度得以执行,和线程A一样执行,只不过线程B成功将记录插到了桶里面,假设线程A插入的记录计算出来的 hash桶索引和线程B要插入的记录计算出来的 hash桶索引是一样的,那么当线程B成功插入之后,线程A再次被调度运行时,它依然持有过期的链表头但是它对此一无所知,以至于它认为它应该这样做,如此一来就覆盖了线程B插入的记录,这样线程B插入的记录就凭空消失了,造成了数据不一致的行为。

  2. resize而引起死循环
    这种情况发生在HashMap自动扩容时,当2个线程同时检测到元素个数超过 数组大小 × 负载因子。此时2个线程会在put()方法中调用了resize(),两个线程同时修改一个链表结构会产生一个循环链表(JDK1.7中,会出现resize前后元素顺序倒置的情况)。接下来再想通过get()获取某一个元素,就会出现死循环。

HashMap和HashTable的区别

HashMap和Hashtable都实现了Map接口,但决定用哪一个之前先要弄清楚它们之间的分别。主要的区别有:线程安全性,同步(synchronization),以及速度。

  1. HashMap几乎可以等价于Hashtable,除了HashMap是非synchronized的,并可以接受null(HashMap可以接受为null的键值(key)和值(value),而Hashtable则不行)。

  2. HashMap是非synchronized,而Hashtable是synchronized,这意味着Hashtable是线程安全的,多个线程可以共享一个Hashtable;而如果没有正确的同步的话,多个线程是不能共享HashMap的。Java 5提供了ConcurrentHashMap,它是HashTable的替代,比HashTable的扩展性更好。

  3. 另一个区别是HashMap的迭代器(Iterator)是fail-fast迭代器,而Hashtable的enumerator迭代器不是fail-fast的。所以当有其它线程改变了HashMap的结构(增加或者移除元素),将会抛出ConcurrentModificationException,但迭代器本身的remove()方法移除元素则不会抛出ConcurrentModificationException异常。但这并不是一个一定发生的行为,要看JVM。这条同样也是Enumeration和Iterator的区别。

  4. 由于Hashtable是线程安全的也是synchronized,所以在单线程环境下它比HashMap要慢。如果你不需要同步,只需要单一线程,那么使用HashMap性能要好过Hashtable。

  5. HashMap不能保证随着时间的推移Map中的元素次序是不变的。

需要注意的重要术语

  1. sychronized意味着在一次仅有一个线程能够更改Hashtable。就是说任何线程要更新Hashtable时要首先获得同步锁,其它线程要等到同步锁被释放之后才能再次获得同步锁更新Hashtable。

  2. Fail-safe和iterator迭代器相关。如果某个集合对象创建了Iterator或者ListIterator,然后其它的线程试图“结构上”更改集合对象,将会抛出ConcurrentModificationException异常。但其它线程可以通过set()方法更改集合对象是允许的,因为这并没有从“结构上”更改集合。但是假如已经从结构上进行了更改,再调用set()方法,将会抛出IllegalArgumentException异常。

  3. 结构上的更改指的是删除或者插入一个元素,这样会影响到map的结构。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/344350.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

企业数字化转型和升级:架构设计方法与实践

企业架构整体结构图例&#xff1a;企业架构整体结构企业架构整体结构从战略层、规划层、落地层这三层来分别对应企业架构中业务、架构和实施的各种重要活动和产出。业务架构&#xff0c;数据架构&#xff0c;应用架构和技术架构之间的内在逻辑联系:图例&#xff1a;企业架构整体…

什么,Excel竟然听得懂人话!?!

Excel知道我们想干啥&#xff0c;不相信&#xff1f;看下面的案例。“数据格式”列中规定了各种数据元类型的长度、保留位数等&#xff0c;我们需要提取对应的数值作为“字段长度”列。比如an..100取100&#xff0c;n4取4&#xff0c;an..100,3取100&#xff0c;..ul取1000&…

C语言学习笔记-排序算法

选择排序 选择排序&#xff08;Selection sort&#xff09;是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小&#xff08;大&#xff09;元素&#xff0c;存放到排序序列的起始位置&#xff0c;然后&#xff0c;再从剩余未排序元素中继续寻找最小&…

元宇宙营销面临的三大挑战

元宇宙的营销就像在早期的互联网建立一个网站一样&#xff0c;你没有多少可以向过去借鉴的&#xff0c;这个领域一切都是崭新的。对于一个实验性很强的项目而言&#xff0c;你很难知道要投入多少的时间和资源&#xff0c;而且这个项目也不一定能保障收益以及满足其他的一些关键…

[小记]注入服务进程/跨session注入

最近测试注入遇到一个问题&#xff1a;OpenProcess 失败&#xff0c;报错码&#xff1a;5&#xff0c;没有权限。 问题排查&#xff1a; 1&#xff0c;是否是管理员权限启动程序&#xff1f; 是 2&#xff0c;注入的目标进程有什么特殊&#xff1f; 目标进程是svchost.exe&…

【PyQt】PyQt学习(二)模块介绍+QObject学习

简介 PyQt API 是一组包含大量类和函数的模块。核心模块如下&#xff1a; QtGui&#xff1a;包含了窗口系统、事件处理&#xff08;QEvent&#xff09;、2D 图像&#xff08;QImage&#xff09;、基本绘画、字体&#xff08;QFont&#xff09;和文字类&#xff1b;QtCore&…

02.13:监督学习中的分类问题

今天首先学习了监督学习中的分类问题&#xff0c;跑了两个代码。现在学起来感觉机器学习有很多不同的定理建立了不同的分类器&#xff0c;也就是所谓不同的方法。具体的数学原理我不太清楚。然后不同的应用场景有一个最优的分类器。 值得一提的应该就是终于清晰的明白了精度&am…

IDEA 中使用 Git 图文教程详解

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…

记录一次time_wait与close_wait的检查

框架与语言&#xff1a;php tp6swoole 原因&#xff1a;每隔几天就会出现,redis:Cannot assign requested address 开始想法&#xff0c;谷歌、百度。然后结果都是配置系统参数。比如下面例子 vi /etc/sysctl.confvm.overcommit_memory 1 net.core.somaxconn 6024 net.ip…

记录--数组去重的五种方法

这里给大家分享我在网上总结出来的一些知识&#xff0c;希望对大家有所帮助 前言 您或许会疑惑&#xff0c;网上那么多去重方法&#xff0c;这篇文章还有什么意义&#xff1f; 别着急&#xff0c;这篇文章只节选了简单的&#xff0c;好玩的&#xff0c;古老的&#xff0c;有实际…

内网渗透(二十四)之Windows协议认证和密码抓取-Mimikatz读取sam和lsass获取密码

系列文章第一章节之基础知识篇 内网渗透(一)之基础知识-内网渗透介绍和概述 内网渗透(二)之基础知识-工作组介绍 内网渗透(三)之基础知识-域环境的介绍和优点 内网渗透(四)之基础知识-搭建域环境 内网渗透(五)之基础知识-Active Directory活动目录介绍和使用 内网渗透(六)之基…

ILSSI国际研讨会将为您呈现六西格玛技术的未来与前景

ILSSI 欢迎世界各地的精益六西格玛专业人士参加即将举行的2023年国际精益六西格玛研讨会&#xff0c;这次研讨会将邀请到世界各地的专家学者&#xff0c;分享他们的专业知识和经验&#xff0c;并就精益六西格玛等相关议题进行探讨和交流。 这是一个绝佳的机会&#xff0c;让您…

Hudi-集成Flink

文章目录集成Flink环境准备sql-client方式启动sql-client插入数据查询数据更新数据流式插入code 方式环境准备代码类型映射核心参数设置去重参数并发参数压缩参数文件大小Hadoop参数内存优化读取方式流读&#xff08;Streaming Query&#xff09;增量读取&#xff08;Increment…

MongoDB简介入门docker安装MongDB,Spring集成MongDB

一、MongoDB简介1、NoSQL简介NoSQL(NoSQL Not Only SQL)&#xff0c;意即反SQL运动&#xff0c;指的是非关系型的数据库&#xff0c;是一项全新的数据库革命性运动&#xff0c;早期就有人提出&#xff0c;发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数据存储…

【C++初阶】十一、STL---priority_queue(总)

目录 一、priority_queue介绍 二、priority_queue使用 三、仿函数 四、priority_queue模拟实现 4.1 版本1 4.2 版本2 一、priority_queue介绍 priority_queue文档介绍 翻译; &#xff08;1&#xff09;优先队列是一种容器适配器&#xff0c;根据严格的弱排序标准&#x…

微服务网关(五)grpc代理模块

微服务网关&#xff08;五&#xff09;grpc代理模块 GRPC是谷歌出品的一个高性能、开源、通用的RPC框架&#xff0c;基于HTTP/2标准设计&#xff0c;支持普通RPC也支持双向流式传递&#xff0c;相对于thrift连接&#xff0c;它可以多路复用&#xff0c;可传递header头数据 在…

Ubuntu20.04 安装Azure Kinect Sensor

本文主要记录Ubuntu20.04 安装Azure Kinect Sensor SDKAzure Kinect 人体跟踪 SDK官网&#xff1a;https://learn.microsoft.com/zh-cn/azure/Kinect-dk/body-sdk-downloadLinux版本目前只支持18.04和20.04Azure Kinect 传感器 SDK 官网&#xff1a;https://learn.microsoft.co…

ubuntu20.04下配置深度学习环境GPU

卸载子系统 C:\Users\thzn>wsl --list 适用于 Linux 的 Windows 子系统分发版: docker-desktop (默认) docker-desktop-data Ubuntu-18.04 Ubuntu-22.04 Ubuntu-20.04 C:\Users\thzn>wsl --unregister Ubuntu-18.04 ubuntu 换源 https://www.cnblogs.com/Horizon-asd/p…

【编程基础之Python】4、安装Python开发工具

【编程基础之Python】4、安装Python开发工具安装Python开发工具为什么需要开发工具Anaconda自带的开发工具PyCharm安装PyCharm运行PyCharm并创建项目总结安装Python开发工具 为什么需要开发工具 通常情况下&#xff0c;为了提高开发效率&#xff0c;需要使用相应的开发工具&a…

Three.js 无限平面快速教程【Plane】

Three.js 提供了 Plane 概念来表示在 3d 空间中无限延伸的二维表面。 这对于光标交互很有用&#xff0c;因此你可能需要了解如何设置此平面、将其可视化并根据需要进行调整。 推荐&#xff1a;使用 NSDT场景设计器 快速搭建 3D场景。 Three.js 的 Plane 文档很好而且准确&…