C语言学习笔记-排序算法

news2024/11/23 7:41:31

选择排序

选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

过程演示:
在这里插入图片描述在这里插入图片描述

实例

void selection_sort(int a[], int len) 
{
    int i,j,temp;
 
    for (i = 0 ; i < len - 1 ; i++) 
    {
        int min = i;                  // 记录最小值,第一个元素默认最小
        for (j = i + 1; j < len; j++)     // 访问未排序的元素
        {
            if (a[j] < a[min])    // 找到目前最小值
            {
                min = j;    // 记录最小值
            }
        }
        if(min != i)
        {
            temp=a[min];  // 交换两个变量
            a[min]=a[i];
            a[i]=temp;
        }
        /* swap(&a[min], &a[i]);  */   // 使用自定义函数交換
    }
}
 
/*
void swap(int *a,int *b) // 交换两个变量
{
    int temp = *a;
    *a = *b;
    *b = temp;
}
*/

冒泡排序

冒泡排序(英语:Bubble Sort)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序(如从大到小、首字母从A到Z)错误就把他们交换过来。

过程演示:
在这里插入图片描述

实例

#include <stdio.h>
void bubble_sort(int arr[], int len) {
    int i, j, temp;
    for (i = 0; i < len - 1; i++)
        for (j = 0; j < len - 1 - i; j++)
            if (arr[j] > arr[j + 1]) {
                temp = arr[j];
                arr[j] = arr[j + 1];
                arr[j + 1] = temp;
            }
}
int main() {
    int arr[] = { 22, 34, 3, 32, 82, 55, 89, 50, 37, 5, 64, 35, 9, 70 };
    int len = (int) sizeof(arr) / sizeof(*arr);
    bubble_sort(arr, len);
    int i;
    for (i = 0; i < len; i++)
        printf("%d ", arr[i]);
    return 0;
}

插入排序

插入排序(英语:Insertion Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到 {\displaystyle O(1)} {\displaystyle O(1)}的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后
挪位,为最新元素提供插入空间。

过程演示:
在这里插入图片描述

实例

void insertion_sort(int arr[], int len){
    int i,j,temp;
    for (i=1;i<len;i++){
            temp = arr[i];
            for (j=i;j>0 && arr[j-1]>temp;j--)
                    arr[j] = arr[j-1];
            arr[j] = temp;
    }
}

希尔排序

希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。希尔排序是非稳定排序算法。

希尔排序是基于插入排序的以下两点性质而提出改进方法的:

  • 插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率
  • 但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位

过程演示:
在这里插入图片描述

实例

void shell_sort(int arr[], int len) {
    int gap, i, j;
    int temp;
    for (gap = len >> 1; gap > 0; gap = gap >> 1)
        for (i = gap; i < len; i++) {
            temp = arr[i];
            for (j = i - gap; j >= 0 && arr[j] > temp; j -= gap)
                arr[j + gap] = arr[j];
            arr[j + gap] = temp;
        }
}

归并排序

把数据分为两段,从两段中逐个选最小的元素移入新数据段的末尾。

可从上到下或从下到上进行。

过程演示:
在这里插入图片描述在这里插入图片描述

迭代法

int min(int x, int y) {
    return x < y ? x : y;
}
void merge_sort(int arr[], int len) {
    int* a = arr;
    int* b = (int*) malloc(len * sizeof(int));
    int seg, start;
    for (seg = 1; seg < len; seg += seg) {
        for (start = 0; start < len; start += seg + seg) {
            int low = start, mid = min(start + seg, len), high = min(start + seg + seg, len);
            int k = low;
            int start1 = low, end1 = mid;
            int start2 = mid, end2 = high;
            while (start1 < end1 && start2 < end2)
                b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];
            while (start1 < end1)
                b[k++] = a[start1++];
            while (start2 < end2)
                b[k++] = a[start2++];
        }
        int* temp = a;
        a = b;
        b = temp;
    }
    if (a != arr) {
        int i;
        for (i = 0; i < len; i++)
            b[i] = a[i];
        b = a;
    }
    free(b);
}

递归法

void merge_sort_recursive(int arr[], int reg[], int start, int end) {
    if (start >= end)
        return;
    int len = end - start, mid = (len >> 1) + start;
    int start1 = start, end1 = mid;
    int start2 = mid + 1, end2 = end;
    merge_sort_recursive(arr, reg, start1, end1);
    merge_sort_recursive(arr, reg, start2, end2);
    int k = start;
    while (start1 <= end1 && start2 <= end2)
        reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];
    while (start1 <= end1)
        reg[k++] = arr[start1++];
    while (start2 <= end2)
        reg[k++] = arr[start2++];
    for (k = start; k <= end; k++)
        arr[k] = reg[k];
}
void merge_sort(int arr[], const int len) {
    int reg[len];
    merge_sort_recursive(arr, reg, 0, len - 1);
}

快速排序

在区间中随机挑选一个元素作基准,将小于基准的元素放在基准之前,大于基准的元素放在基准之后,再分别对小数区与大数区进行排序。

过程演示:
在这里插入图片描述

迭代法

typedef struct _Range {
    int start, end;
} Range;
Range new_Range(int s, int e) {
    Range r;
    r.start = s;
    r.end = e;
    return r;
}
void swap(int *x, int *y) {
    int t = *x;
    *x = *y;
    *y = t;
}
void quick_sort(int arr[], const int len) {
    if (len <= 0)
        return; // 避免len等於負值時引發段錯誤(Segment Fault)
    // r[]模擬列表,p為數量,r[p++]為push,r[--p]為pop且取得元素
    Range r[len];
    int p = 0;
    r[p++] = new_Range(0, len - 1);
    while (p) {
        Range range = r[--p];
        if (range.start >= range.end)
            continue;
        int mid = arr[(range.start + range.end) / 2]; // 選取中間點為基準點
        int left = range.start, right = range.end;
        do
        {
            while (arr[left] < mid) ++left;   // 檢測基準點左側是否符合要求
            while (arr[right] > mid) --right; //檢測基準點右側是否符合要求
 
            if (left <= right)
            {
                swap(&arr[left],&arr[right]);
                left++;right--;               // 移動指針以繼續
            }
        } while (left <= right);
 
        if (range.start < right) r[p++] = new_Range(range.start, right);
        if (range.end > left) r[p++] = new_Range(left, range.end);
    }
}

递归法

void swap(int *x, int *y) {
    int t = *x;
    *x = *y;
    *y = t;
}
void quick_sort_recursive(int arr[], int start, int end) {
    if (start >= end)
        return;
    int mid = arr[end];
    int left = start, right = end - 1;
    while (left < right) {
        while (arr[left] < mid && left < right)
            left++;
        while (arr[right] >= mid && left < right)
            right--;
        swap(&arr[left], &arr[right]);
    }
    if (arr[left] >= arr[end])
        swap(&arr[left], &arr[end]);
    else
        left++;
    if (left)
        quick_sort_recursive(arr, start, left - 1);
    quick_sort_recursive(arr, left + 1, end);
}
void quick_sort(int arr[], int len) {
    quick_sort_recursive(arr, 0, len - 1);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/344346.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

元宇宙营销面临的三大挑战

元宇宙的营销就像在早期的互联网建立一个网站一样&#xff0c;你没有多少可以向过去借鉴的&#xff0c;这个领域一切都是崭新的。对于一个实验性很强的项目而言&#xff0c;你很难知道要投入多少的时间和资源&#xff0c;而且这个项目也不一定能保障收益以及满足其他的一些关键…

[小记]注入服务进程/跨session注入

最近测试注入遇到一个问题&#xff1a;OpenProcess 失败&#xff0c;报错码&#xff1a;5&#xff0c;没有权限。 问题排查&#xff1a; 1&#xff0c;是否是管理员权限启动程序&#xff1f; 是 2&#xff0c;注入的目标进程有什么特殊&#xff1f; 目标进程是svchost.exe&…

【PyQt】PyQt学习(二)模块介绍+QObject学习

简介 PyQt API 是一组包含大量类和函数的模块。核心模块如下&#xff1a; QtGui&#xff1a;包含了窗口系统、事件处理&#xff08;QEvent&#xff09;、2D 图像&#xff08;QImage&#xff09;、基本绘画、字体&#xff08;QFont&#xff09;和文字类&#xff1b;QtCore&…

02.13:监督学习中的分类问题

今天首先学习了监督学习中的分类问题&#xff0c;跑了两个代码。现在学起来感觉机器学习有很多不同的定理建立了不同的分类器&#xff0c;也就是所谓不同的方法。具体的数学原理我不太清楚。然后不同的应用场景有一个最优的分类器。 值得一提的应该就是终于清晰的明白了精度&am…

IDEA 中使用 Git 图文教程详解

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…

记录一次time_wait与close_wait的检查

框架与语言&#xff1a;php tp6swoole 原因&#xff1a;每隔几天就会出现,redis:Cannot assign requested address 开始想法&#xff0c;谷歌、百度。然后结果都是配置系统参数。比如下面例子 vi /etc/sysctl.confvm.overcommit_memory 1 net.core.somaxconn 6024 net.ip…

记录--数组去重的五种方法

这里给大家分享我在网上总结出来的一些知识&#xff0c;希望对大家有所帮助 前言 您或许会疑惑&#xff0c;网上那么多去重方法&#xff0c;这篇文章还有什么意义&#xff1f; 别着急&#xff0c;这篇文章只节选了简单的&#xff0c;好玩的&#xff0c;古老的&#xff0c;有实际…

内网渗透(二十四)之Windows协议认证和密码抓取-Mimikatz读取sam和lsass获取密码

系列文章第一章节之基础知识篇 内网渗透(一)之基础知识-内网渗透介绍和概述 内网渗透(二)之基础知识-工作组介绍 内网渗透(三)之基础知识-域环境的介绍和优点 内网渗透(四)之基础知识-搭建域环境 内网渗透(五)之基础知识-Active Directory活动目录介绍和使用 内网渗透(六)之基…

ILSSI国际研讨会将为您呈现六西格玛技术的未来与前景

ILSSI 欢迎世界各地的精益六西格玛专业人士参加即将举行的2023年国际精益六西格玛研讨会&#xff0c;这次研讨会将邀请到世界各地的专家学者&#xff0c;分享他们的专业知识和经验&#xff0c;并就精益六西格玛等相关议题进行探讨和交流。 这是一个绝佳的机会&#xff0c;让您…

Hudi-集成Flink

文章目录集成Flink环境准备sql-client方式启动sql-client插入数据查询数据更新数据流式插入code 方式环境准备代码类型映射核心参数设置去重参数并发参数压缩参数文件大小Hadoop参数内存优化读取方式流读&#xff08;Streaming Query&#xff09;增量读取&#xff08;Increment…

MongoDB简介入门docker安装MongDB,Spring集成MongDB

一、MongoDB简介1、NoSQL简介NoSQL(NoSQL Not Only SQL)&#xff0c;意即反SQL运动&#xff0c;指的是非关系型的数据库&#xff0c;是一项全新的数据库革命性运动&#xff0c;早期就有人提出&#xff0c;发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数据存储…

【C++初阶】十一、STL---priority_queue(总)

目录 一、priority_queue介绍 二、priority_queue使用 三、仿函数 四、priority_queue模拟实现 4.1 版本1 4.2 版本2 一、priority_queue介绍 priority_queue文档介绍 翻译; &#xff08;1&#xff09;优先队列是一种容器适配器&#xff0c;根据严格的弱排序标准&#x…

微服务网关(五)grpc代理模块

微服务网关&#xff08;五&#xff09;grpc代理模块 GRPC是谷歌出品的一个高性能、开源、通用的RPC框架&#xff0c;基于HTTP/2标准设计&#xff0c;支持普通RPC也支持双向流式传递&#xff0c;相对于thrift连接&#xff0c;它可以多路复用&#xff0c;可传递header头数据 在…

Ubuntu20.04 安装Azure Kinect Sensor

本文主要记录Ubuntu20.04 安装Azure Kinect Sensor SDKAzure Kinect 人体跟踪 SDK官网&#xff1a;https://learn.microsoft.com/zh-cn/azure/Kinect-dk/body-sdk-downloadLinux版本目前只支持18.04和20.04Azure Kinect 传感器 SDK 官网&#xff1a;https://learn.microsoft.co…

ubuntu20.04下配置深度学习环境GPU

卸载子系统 C:\Users\thzn>wsl --list 适用于 Linux 的 Windows 子系统分发版: docker-desktop (默认) docker-desktop-data Ubuntu-18.04 Ubuntu-22.04 Ubuntu-20.04 C:\Users\thzn>wsl --unregister Ubuntu-18.04 ubuntu 换源 https://www.cnblogs.com/Horizon-asd/p…

【编程基础之Python】4、安装Python开发工具

【编程基础之Python】4、安装Python开发工具安装Python开发工具为什么需要开发工具Anaconda自带的开发工具PyCharm安装PyCharm运行PyCharm并创建项目总结安装Python开发工具 为什么需要开发工具 通常情况下&#xff0c;为了提高开发效率&#xff0c;需要使用相应的开发工具&a…

Three.js 无限平面快速教程【Plane】

Three.js 提供了 Plane 概念来表示在 3d 空间中无限延伸的二维表面。 这对于光标交互很有用&#xff0c;因此你可能需要了解如何设置此平面、将其可视化并根据需要进行调整。 推荐&#xff1a;使用 NSDT场景设计器 快速搭建 3D场景。 Three.js 的 Plane 文档很好而且准确&…

Locust初次体验【解决webUI没数据】

官方文档&#xff1a;What is Locust? — Locust 2.14.2 documentation webUI模式跑起来没有数据。。。。&#xff1f;&#xff1f;&#xff1f;&#xff1b; E:\T_Work\other\WB_Locust\my_locustfiles>locust [2023-02-14 09:57:44,530] PC-20190108TSZQ/INFO/locust.m…

Java 基础面试题——基本数据类型与包装类

目录1.Java 有哪几种基本数据类型&#xff1f;分别对应哪些包装类&#xff1f;2.Java 中为什么要保留基本数据类型&#xff1f;为什么要使用包装类&#xff1f;3.基本数据类型的转换规则有哪些&#xff1f;4.基本数据类型与包装类有什么区别&#xff1f;5.什么是装箱&#xff1…

MongoDB--》索引的了解及具体操作

目录 索引—index 索引的类型 索引的管理操作 索引的使用 索引—index 使用索引的原因&#xff1a;索引支持在MongoDB中高效地执行查询。如果没有索引&#xff0c;MongoDB必须执行全集合扫描&#xff0c;即扫描集合中的每个文档&#xff0c;以选择与查询语句匹配的文档。这…