Retinanet网络与focal loss损失

news2024/11/24 4:56:35

1.损失函数

1)原理 

本文一个核心的贡献点就是 focal loss。总损失依然分为两部分,一部分是分类损失,一部分是回归损失。

在讲分类损失之前,我们来回顾一下二分类交叉熵损失 (binary_cross_entropy)。

 计算代码如下:

import numpy as np
y_true = np.array([0., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
y_pred = np.array([0.2, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8])
my_loss = - y_true * np.log(y_pred) - (1 - y_true) * np.log(1 - y_pred)
mean_my_loss = np.mean(my_loss)
print("mean_my_loss:",mean_my_loss)

调用pytorch自带的函数计算

import torch.nn.functional as F
import numpy as np
import torch
torch_pred = torch.tensor(y_pred)
torch_true = torch.tensor(y_true)
bce_loss = F.binary_cross_entropy(torch_pred, torch_true)
print('bce_loss:', bce_loss)

 现在回到focal loss,Focal loss的起源是二分类交叉熵。

二分类的交叉熵损失还可以如下表示,其中y∈{1,-1},1代表候选框是正样本,-1代表是负样本:

 为了表示方便,可以定义如下公式:

那么问题来了,应用场景如下: 

在one-stage 物体检测模型中,一张图中能匹配到目标的候选框(正样本)大概是十几个到几十个,然后没有匹配到的候选框(负样本)10 的四次方到五次方。这些负样本中,大部分都是简单易分的样本,对于训练样本起不到作用,反而淹没了有助于训练的样本。

举个例子,正样本有50个,损失是3,负样本是10000个,损失是0.1

那么50x3 = 150,10000x0.1=1000

 所以,为了平衡交叉熵,采用了系数αt,当是正样本的时候,αt = α,负样本的时候 αt=1-α,α∈[0,1]

αt能平衡正负样本的权重,但是不能区分哪些是困难样本,哪些是容易样本(是否对训练有帮助)。

所以继续引入公式,这样就解决了区分样本容易性的问题:

 最后,结合两个公式,形成最终的公式。

 展开形式如下

现在来看一下效果,p代表预测候选框是正样本的概率,y是候选框实际上是正样本还是负样本,CE是普通交叉熵计算的损失,FL是focal loss,rate是缩小的比例。可以看出,最后两行难区分样本的rate很小。

 2)代码

import numpy as np
import torch
import torch.nn as nn

class FocalLoss(nn.Module):
    #def __init__(self):

    def forward(self, classifications, regressions, anchors, annotations):
        alpha = 0.25
        gamma = 2.0
        # classifications是预测结果
        batch_size = classifications.shape[0]
        # 分类loss
        classification_losses = []
        # 回归loss
        regression_losses = []
        # anchors的形状是 [1, 每层anchor数量之和 , 4]
        anchor = anchors[0, :, :]

        anchor_widths  = anchor[:, 2] - anchor[:, 0]  # x2-x1
        anchor_heights = anchor[:, 3] - anchor[:, 1]  # y2-y1
        anchor_ctr_x   = anchor[:, 0] + 0.5 * anchor_widths  # 中心点x坐标
        anchor_ctr_y   = anchor[:, 1] + 0.5 * anchor_heights  # 中心点y坐标

        for j in range(batch_size):
            # classifications的shape [batch,所有anchor的数量,分类数]
            classification = classifications[j, :, :]
            # classifications的shape [batch,所有anchor的数量,分类数]
            regression = regressions[j, :, :]

            bbox_annotation = annotations[j, :, :]
            bbox_annotation = bbox_annotation[bbox_annotation[:, 4] != -1]

            classification = torch.clamp(classification, 1e-4, 1.0 - 1e-4)

            if bbox_annotation.shape[0] == 0:
                if torch.cuda.is_available():
                    alpha_factor = torch.ones(classification.shape).cuda() * alpha

                    alpha_factor = 1. - alpha_factor
                    focal_weight = classification
                    focal_weight = alpha_factor * torch.pow(focal_weight, gamma)

                    bce = -(torch.log(1.0 - classification))

                    # cls_loss = focal_weight * torch.pow(bce, gamma)
                    cls_loss = focal_weight * bce
                    classification_losses.append(cls_loss.sum())
                    regression_losses.append(torch.tensor(0).float().cuda())

                else:
                    alpha_factor = torch.ones(classification.shape) * alpha

                    alpha_factor = 1. - alpha_factor
                    focal_weight = classification
                    focal_weight = alpha_factor * torch.pow(focal_weight, gamma)

                    bce = -(torch.log(1.0 - classification))

                    # cls_loss = focal_weight * torch.pow(bce, gamma)
                    cls_loss = focal_weight * bce
                    classification_losses.append(cls_loss.sum())
                    regression_losses.append(torch.tensor(0).float())

                continue
                # 每个anchor 与 每个标注的真实框的iou
            IoU = calc_iou(anchors[0, :, :], bbox_annotation[:, :4]) # num_anchors x num_annotations
            # 每个anchor对应的最大的iou (anchor与grandtruce进行配对)
            # 得到了配对的索引和对应的最大值
            IoU_max, IoU_argmax = torch.max(IoU, dim=1)

            #import pdb
            #pdb.set_trace()

            # compute the loss for classification
            # classification 的shape[anchor总数,分类数]
            targets = torch.ones(classification.shape) * -1

            if torch.cuda.is_available():
                targets = targets.cuda()
            # 判断每个元素是否小于0.4 小于就返回true(anchor对应的最大iou<0.4,那就是背景)
            targets[torch.lt(IoU_max, 0.4), :] = 0
            # 最大iou大于0.5的anchor索引
            positive_indices = torch.ge(IoU_max, 0.5)

            num_positive_anchors = positive_indices.sum()

            assigned_annotations = bbox_annotation[IoU_argmax, :]

            targets[positive_indices, :] = 0
            targets[positive_indices, assigned_annotations[positive_indices, 4].long()] = 1

            if torch.cuda.is_available():
                alpha_factor = torch.ones(targets.shape).cuda() * alpha
            else:
                alpha_factor = torch.ones(targets.shape) * alpha

            alpha_factor = torch.where(torch.eq(targets, 1.), alpha_factor, 1. - alpha_factor)
            focal_weight = torch.where(torch.eq(targets, 1.), 1. - classification, classification)
            focal_weight = alpha_factor * torch.pow(focal_weight, gamma)

            bce = -(targets * torch.log(classification) + (1.0 - targets) * torch.log(1.0 - classification))

            # cls_loss = focal_weight * torch.pow(bce, gamma)
            cls_loss = focal_weight * bce

            if torch.cuda.is_available():
                cls_loss = torch.where(torch.ne(targets, -1.0), cls_loss, torch.zeros(cls_loss.shape).cuda())
            else:
                cls_loss = torch.where(torch.ne(targets, -1.0), cls_loss, torch.zeros(cls_loss.shape))

            classification_losses.append(cls_loss.sum()/torch.clamp(num_positive_anchors.float(), min=1.0))

            # compute the loss for regression

            if positive_indices.sum() > 0:
                assigned_annotations = assigned_annotations[positive_indices, :]

                anchor_widths_pi = anchor_widths[positive_indices]
                anchor_heights_pi = anchor_heights[positive_indices]
                anchor_ctr_x_pi = anchor_ctr_x[positive_indices]
                anchor_ctr_y_pi = anchor_ctr_y[positive_indices]

                gt_widths  = assigned_annotations[:, 2] - assigned_annotations[:, 0]
                gt_heights = assigned_annotations[:, 3] - assigned_annotations[:, 1]
                gt_ctr_x   = assigned_annotations[:, 0] + 0.5 * gt_widths
                gt_ctr_y   = assigned_annotations[:, 1] + 0.5 * gt_heights

                # clip widths to 1
                gt_widths  = torch.clamp(gt_widths, min=1)
                gt_heights = torch.clamp(gt_heights, min=1)

                targets_dx = (gt_ctr_x - anchor_ctr_x_pi) / anchor_widths_pi
                targets_dy = (gt_ctr_y - anchor_ctr_y_pi) / anchor_heights_pi
                targets_dw = torch.log(gt_widths / anchor_widths_pi)
                targets_dh = torch.log(gt_heights / anchor_heights_pi)

                targets = torch.stack((targets_dx, targets_dy, targets_dw, targets_dh))
                targets = targets.t()

                if torch.cuda.is_available():
                    targets = targets/torch.Tensor([[0.1, 0.1, 0.2, 0.2]]).cuda()
                else:
                    targets = targets/torch.Tensor([[0.1, 0.1, 0.2, 0.2]])

                negative_indices = 1 + (~positive_indices)

                regression_diff = torch.abs(targets - regression[positive_indices, :])

                regression_loss = torch.where(
                    torch.le(regression_diff, 1.0 / 9.0),
                    0.5 * 9.0 * torch.pow(regression_diff, 2),
                    regression_diff - 0.5 / 9.0
                )
                regression_losses.append(regression_loss.mean())
            else:
                if torch.cuda.is_available():
                    regression_losses.append(torch.tensor(0).float().cuda())
                else:
                    regression_losses.append(torch.tensor(0).float())

        return torch.stack(classification_losses).mean(dim=0, keepdim=True), torch.stack(regression_losses).mean(dim=0, keepdim=True)

3)分类损失的计算过程 

假设一张图片有n个anchor,有m个grandtrue,有L个类别

 1.得到anchor和每一个grandtrue的IOU

# 每个anchor 与 每个标注的真实框的iou
IoU = calc_iou(anchors[0, :, :], bbox_annotation[:, :4]) # num_anchors x num_annotations

2.得到每个anchor最大的IOU,以及对应的grandtrue

IoU_max, IoU_argmax = torch.max(IoU, dim=1)

 3.初始化一个分类目标结果表,默认值是-1

 targets = torch.ones(classification.shape) * -1

 

4.如果某个anchor的最大IOU<0.4,那么它对应的分类全为0

targets[torch.lt(IoU_max, 0.4), :] = 0

例如:iou3m = 0.3,ioun2 = 0.2 

此时,上述分类结果表就更新anchor3,和anchorn的分类结果

5.把每个anchor关联对应的grandtruce信息,其中参数5是预测的类别

# 最大iou大于0.5的anchor索引
positive_indices = torch.ge(IoU_max, 0.5)

num_positive_anchors = positive_indices.sum()

assigned_annotations = bbox_annotation[IoU_argmax, :]

 6.如果anchor的最大IOU>0.5,那么根据参数5,修改对应的分类结果表为one-hot形式

targets[positive_indices, :] = 0
targets[positive_indices, assigned_annotations[positive_indices, 4].long()] = 1

 例如 iou12 = 0.6,参数5 = class2

修改分类结果表

7. 得到损失的权重部分

alpha_factor = torch.where(torch.eq(targets, 1.), alpha_factor, 1. - alpha_factor)
focal_weight = torch.where(torch.eq(targets, 1.), 1. - classification, classification)
focal_weight = alpha_factor * torch.pow(focal_weight, gamma)

α表,将0的地方替换成1-α,1的地方替换成 α

 

p表 将0的地方原概率,1的地方换成1-p

 

权重表的元素就是两表对应元素的乘积 

8.得到损失的损失部分

bce = -(targets * torch.log(classification) + (1.0 - targets) * torch.log(1.0 - classification))

 9.得到初步的损失结果

cls_loss = focal_weight * bce

10.将分类结果表原本是-1的地方,对应的损失变成0

例如anchor2最大iou是0.45,介于0.4与0.5之间,我们就不计算他的损失,忽略不计

if torch.cuda.is_available():
        cls_loss = torch.where(torch.ne(targets, -1.0), cls_loss, torch.zeros(cls_loss.shape).cuda())
else:
        cls_loss = torch.where(torch.ne(targets, -1.0), cls_loss, torch.zeros(cls_loss.shape))

 11.损失汇总

classification_losses.append(cls_loss.sum()/torch.clamp(num_positive_anchors.float(), min=1.0))

 2.网络结构

整体来讲,网络采用了FPN模型

 这个结构也是可以变的(可以灵活改变),如下所示

 

 模型如下所示

 其中每个位置的anchor是9个,三个形状x三个比例

K是分类的数量,A是每个位置anchor是数量

4A,4是四个参数可以确定anchor的位置和大小。

3.代码讲解:

1.FPN分支部分

 

self.P5_1 = nn.Conv2d(C5_size, feature_size, kernel_size=1, stride=1, padding=0)
self.P5_upsampled = nn.Upsample(scale_factor=2, mode='nearest')
self.P5_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)


self.P4_1 = nn.Conv2d(C4_size, feature_size, kernel_size=1, stride=1, padding=0)
self.P4_upsampled = nn.Upsample(scale_factor=2, mode='nearest')
self.P4_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)

self.P3_1 = nn.Conv2d(C3_size, feature_size, kernel_size=1, stride=1, padding=0)
self.P3_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)

 

self.P6 = nn.Conv2d(C5_size, feature_size, kernel_size=3, stride=2, padding=1)

 

self.P7_1 = nn.ReLU()
self.P7_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=2, padding=1)

forward

    def forward(self, inputs):
        #inputs 是主干模块conv3、conv4、conv5的输出
        C3, C4, C5 = inputs

        P5_x = self.P5_1(C5)
        P5_upsampled_x = self.P5_upsampled(P5_x)
        P5_x = self.P5_2(P5_x)

        P4_x = self.P4_1(C4)
        P4_x = P5_upsampled_x + P4_x
        P4_upsampled_x = self.P4_upsampled(P4_x)
        P4_x = self.P4_2(P4_x)

        P3_x = self.P3_1(C3)
        P3_x = P3_x + P4_upsampled_x
        P3_x = self.P3_2(P3_x)

        P6_x = self.P6(C5)

        P7_x = self.P7_1(P6_x)
        P7_x = self.P7_2(P7_x)

        return [P3_x, P4_x, P5_x, P6_x, P7_x]

 2.回归自网络

class RegressionModel(nn.Module):
    def __init__(self, num_features_in, num_anchors=9, feature_size=256):
        super(RegressionModel, self).__init__()
        #其实num_features_in就等于256
        self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3, padding=1)
        self.act1 = nn.ReLU()

        self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
        self.act2 = nn.ReLU()

        self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
        self.act3 = nn.ReLU()

        self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
        self.act4 = nn.ReLU()
        #4个参数就能确定anchor的大小
        self.output = nn.Conv2d(feature_size, num_anchors * 4, kernel_size=3, padding=1)

    def forward(self, x):
        out = self.conv1(x)
        out = self.act1(out)

        out = self.conv2(out)
        out = self.act2(out)

        out = self.conv3(out)
        out = self.act3(out)

        out = self.conv4(out)
        out = self.act4(out)

        out = self.output(out)

        # out is B x C x W x H, with C = 4*num_anchors
        out = out.permute(0, 2, 3, 1)

        #相当于展平了,-1的位置相当于所有anchor的数目
        return out.contiguous().view(out.shape[0], -1, 4)

3.分类网络

class ClassificationModel(nn.Module):
    def __init__(self, num_features_in, num_anchors=9, num_classes=80, prior=0.01, feature_size=256):
        super(ClassificationModel, self).__init__()

        self.num_classes = num_classes
        self.num_anchors = num_anchors

        self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3, padding=1)
        self.act1 = nn.ReLU()

        self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
        self.act2 = nn.ReLU()

        self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
        self.act3 = nn.ReLU()

        self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
        self.act4 = nn.ReLU()

        self.output = nn.Conv2d(feature_size, num_anchors * num_classes, kernel_size=3, padding=1)
        self.output_act = nn.Sigmoid()

    def forward(self, x):
        out = self.conv1(x)
        out = self.act1(out)

        out = self.conv2(out)
        out = self.act2(out)

        out = self.conv3(out)
        out = self.act3(out)

        out = self.conv4(out)
        out = self.act4(out)

        out = self.output(out)
        out = self.output_act(out)

        # out is B x C x W x H, with C = n_classes + n_anchors
        out1 = out.permute(0, 2, 3, 1)

        batch_size, width, height, channels = out1.shape

        out2 = out1.view(batch_size, width, height, self.num_anchors, self.num_classes)

        return out2.contiguous().view(x.shape[0], -1, self.num_classes)

4.主干网络、训练和预测过程

1.网络结构

 经过conv1缩小4倍,经过conv2不变,conv3、v4,v5都缩小两倍,p5到p6缩小两倍,p6到p7缩小两倍

p3相对于图片缩小了2的3次方,p4相对于图片缩小了2的4次方,以此类推

class ResNet(nn.Module):

    #layers是层数
    def __init__(self, num_classes, block, layers):
        self.inplanes = 64
        super(ResNet, self).__init__()
        #这个是输入 conv1
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        #这是c2
        self.layer1 = self._make_layer(block, 64, layers[0])
        #这是c3
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        #这是c4
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        #这是c5
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        #得到c3、c4、c5输出的通道数
        if block == BasicBlock:
            fpn_sizes = [self.layer2[layers[1] - 1].conv2.out_channels, self.layer3[layers[2] - 1].conv2.out_channels,
                         self.layer4[layers[3] - 1].conv2.out_channels]
        elif block == Bottleneck:
            fpn_sizes = [self.layer2[layers[1] - 1].conv3.out_channels, self.layer3[layers[2] - 1].conv3.out_channels,
                         self.layer4[layers[3] - 1].conv3.out_channels]
        else:
            raise ValueError(f"Block type {block} not understood")
        #创建FPN的分支部分
        self.fpn = PyramidFeatures(fpn_sizes[0], fpn_sizes[1], fpn_sizes[2])
        #创建回归网络
        self.regressionModel = RegressionModel(256)
        #创建分类网络
        self.classificationModel = ClassificationModel(256, num_classes=num_classes)

        self.anchors = Anchors()

        self.regressBoxes = BBoxTransform()

        self.clipBoxes = ClipBoxes()

        self.focalLoss = losses.FocalLoss()
        #权重初始化
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

        prior = 0.01

        self.classificationModel.output.weight.data.fill_(0)
        self.classificationModel.output.bias.data.fill_(-math.log((1.0 - prior) / prior))

        self.regressionModel.output.weight.data.fill_(0)
        self.regressionModel.output.bias.data.fill_(0)
        #冻结bn层参数更新,因为预训练的参数已经很好了
        self.freeze_bn()

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = [block(self.inplanes, planes, stride, downsample)]
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def freeze_bn(self):
        '''Freeze BatchNorm layers.'''
        for layer in self.modules():
            if isinstance(layer, nn.BatchNorm2d):
                layer.eval()

 2.训练过程和预测过程

1)anchor的调整

生成的预测值 regression [batch, anchor的数量,4]  regression[:, :, 0]和[:, :, 1]用来移动anchor中心点 [:, :, 2]和[:, :, 3]用来改变框子的长度 

import torch.nn as nn
import torch
import numpy as np

# 生成的预测值 regression [batch, anchor的数量,4]  regression[:, :, 0]和[:, :, 1]用来移动anchor中心点 [:, :, 2]和[:, :, 3]用来改变框子的长度
class BBoxTransform(nn.Module):

    def __init__(self, mean=None, std=None):
        super(BBoxTransform, self).__init__()
        if mean is None:
            if torch.cuda.is_available():
                self.mean = torch.from_numpy(np.array([0, 0, 0, 0]).astype(np.float32)).cuda()
            else:
                self.mean = torch.from_numpy(np.array([0, 0, 0, 0]).astype(np.float32))

        else:
            self.mean = mean
        if std is None:
            if torch.cuda.is_available():
                self.std = torch.from_numpy(np.array([0.1, 0.1, 0.2, 0.2]).astype(np.float32)).cuda()
            else:
                self.std = torch.from_numpy(np.array([0.1, 0.1, 0.2, 0.2]).astype(np.float32))
        else:
            self.std = std

    def forward(self, boxes, deltas):

        #boxes就是图片所有的anchor[batch , 一张图片上anchor的总数 ,4]
        widths  = boxes[:, :, 2] - boxes[:, :, 0]  # x2 - x1 = 宽
        heights = boxes[:, :, 3] - boxes[:, :, 1]  # y2 - y1 = 高
        ctr_x   = boxes[:, :, 0] + 0.5 * widths    # x1 + 宽/2 = 中心点 x
        ctr_y   = boxes[:, :, 1] + 0.5 * heights   # y1 + 高/2 = 中心点 y

        dx = deltas[:, :, 0] * self.std[0] + self.mean[0]
        dy = deltas[:, :, 1] * self.std[1] + self.mean[1]
        dw = deltas[:, :, 2] * self.std[2] + self.mean[2]
        dh = deltas[:, :, 3] * self.std[3] + self.mean[3]

        pred_ctr_x = ctr_x + dx * widths
        pred_ctr_y = ctr_y + dy * heights
        pred_w     = torch.exp(dw) * widths
        pred_h     = torch.exp(dh) * heights

        pred_boxes_x1 = pred_ctr_x - 0.5 * pred_w
        pred_boxes_y1 = pred_ctr_y - 0.5 * pred_h
        pred_boxes_x2 = pred_ctr_x + 0.5 * pred_w
        pred_boxes_y2 = pred_ctr_y + 0.5 * pred_h

        pred_boxes = torch.stack([pred_boxes_x1, pred_boxes_y1, pred_boxes_x2, pred_boxes_y2], dim=2)

        return pred_boxes

2总过程

    def forward(self, inputs):

        if self.training:
            img_batch, annotations = inputs
        else:
            img_batch = inputs

        x = self.conv1(img_batch)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x1 = self.layer1(x)
        x2 = self.layer2(x1)
        x3 = self.layer3(x2)
        x4 = self.layer4(x3)

        features = self.fpn([x2, x3, x4])
        #shape[batch,每次anchor总数之和,4个值]
        regression = torch.cat([self.regressionModel(feature) for feature in features], dim=1)
        # shape[batch,每次anchor总数之和,分类个数]
        classification = torch.cat([self.classificationModel(feature) for feature in features], dim=1)

        anchors = self.anchors(img_batch)

        if self.training:
            return self.focalLoss(classification, regression, anchors, annotations)
        else:
            #得到调节参数之后的框子
            transformed_anchors = self.regressBoxes(anchors, regression)
            #保证框子在图片之内
            transformed_anchors = self.clipBoxes(transformed_anchors, img_batch)

            finalResult = [[], [], []]
            #每个框对应类别的置信度
            finalScores = torch.Tensor([])
            #框对应的分类序号:第几类
            finalAnchorBoxesIndexes = torch.Tensor([]).long()
            #框的坐标
            finalAnchorBoxesCoordinates = torch.Tensor([])

            if torch.cuda.is_available():
                finalScores = finalScores.cuda()
                finalAnchorBoxesIndexes = finalAnchorBoxesIndexes.cuda()
                finalAnchorBoxesCoordinates = finalAnchorBoxesCoordinates.cuda()

            for i in range(classification.shape[2]):
                scores = torch.squeeze(classification[:, :, i])
                scores_over_thresh = (scores > 0.05)
                if scores_over_thresh.sum() == 0:
                    # no boxes to NMS, just continue
                    continue

                scores = scores[scores_over_thresh]
                anchorBoxes = torch.squeeze(transformed_anchors)
                anchorBoxes = anchorBoxes[scores_over_thresh]
                anchors_nms_idx = nms(anchorBoxes, scores, 0.5)

                finalResult[0].extend(scores[anchors_nms_idx])
                finalResult[1].extend(torch.tensor([i] * anchors_nms_idx.shape[0]))
                finalResult[2].extend(anchorBoxes[anchors_nms_idx])

                finalScores = torch.cat((finalScores, scores[anchors_nms_idx]))
                finalAnchorBoxesIndexesValue = torch.tensor([i] * anchors_nms_idx.shape[0])
                if torch.cuda.is_available():
                    finalAnchorBoxesIndexesValue = finalAnchorBoxesIndexesValue.cuda()

                finalAnchorBoxesIndexes = torch.cat((finalAnchorBoxesIndexes, finalAnchorBoxesIndexesValue))
                finalAnchorBoxesCoordinates = torch.cat((finalAnchorBoxesCoordinates, anchorBoxes[anchors_nms_idx]))

            return [finalScores, finalAnchorBoxesIndexes, finalAnchorBoxesCoordinates]

5.两种block的定义

import torch.nn as nn


def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out

6.anchor

1.每个位置的生成anchor函数

anchor的生成都是以原图为基准的

这个函数的作用是生成一个位置中所有的anchor,形式是(x1,y1,x2,y2)并且(X1,y1)和(x2,y2)关于中心对称,这样给定一个中点,可以直接拿(x1,y1,x2,y2)计算出相应的anchor

大概功能步骤:

1.确定每个位置anchor的数量:宽高比例数量x边长缩放比例数量

2.得到anchor的标准边长缩放后的结果 :base_size  x   scales

3.通过上述结果得到标准面积:(base_size  x   scales)的平方

2.通过h = sqrt(areas / ratio)和w = h * ratio得到宽高

3.得到每个anchor的两个坐标  (0-h/2 , 0-w/2) 和 (h/2 , w/2)

4.输出anchor

def generate_anchors(base_size=16, ratios=None, scales=None):
    """
    Generate anchor (reference) windows by enumerating aspect ratios X
    scales w.r.t. a reference window.
    """

    if ratios is None:
        ratios = np.array([0.5, 1, 2])

    if scales is None:
        scales = np.array([2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)])
    #每个位置的anchor总数 n种规模 * m种比例
    num_anchors = len(ratios) * len(scales)

    # 初始化anchor的参数 x,y,w,h
    anchors = np.zeros((num_anchors, 4))

    # scale base_size
    #np.tile(scales, (2, len(ratios))).T结果如下:
    #[[1.         1.        ]
    # [1.25992105 1.25992105]
    # [1.58740105 1.58740105]
    # [1.         1.        ]
    # [1.25992105 1.25992105]
    # [1.58740105 1.58740105]
    # [1.         1.        ]
    # [1.25992105 1.25992105]
    # [1.58740105 1.58740105]]
    # shape (9, 2)
    #设置anchor的w、h的基础大小(1:1)
    anchors[:, 2:] = base_size * np.tile(scales, (2, len(ratios))).T

    # 计算anchor的基础面积
    #[area1,area2,area3,area1,area2,area3,area1,area2,area3]
    areas = anchors[:, 2] * anchors[:, 3]

    # correct for ratios
    #利用面积和宽高比得到真正的宽和高
    #根据公式1: areas / (w/h) = areas / ratio = hxh  => h = sqrt(areas / ratio)
    # 公式2:w = h * ratio
    #np.repeat(ratios, len(scales))) = [0.5,0.5,0.5 ,1,1,1,2,2,2]

    # 最终的效果就是 面积1的高宽,面积2的高宽,面积3的高宽
    anchors[:, 2] = np.sqrt(areas / np.repeat(ratios, len(scales)))
    anchors[:, 3] = anchors[:, 2] * np.repeat(ratios, len(scales))

    # 转换anchor的形式 (x_ctr, y_ctr, w, h) -> (x1, y1, x2, y2)
    # 左上角为中心点,形成9个anchor
    anchors[:, 0::2] -= np.tile(anchors[:, 2] * 0.5, (2, 1)).T
    anchors[:, 1::2] -= np.tile(anchors[:, 3] * 0.5, (2, 1)).T

    return anchors

演示步骤与效果如下所示:

pyramid_levels = [3, 4, 5, 6, 7]
strides = [2 ** x for x in pyramid_levels]
sizes = [2 ** (x + 2) for x in pyramid_levels]
ratios = np.array([0.5, 1, 2])
scales = np.array([2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)])
num_anchors = len(ratios) * len(scales)
anchors = np.zeros((num_anchors, 4))
anchors[:, 2:] = 16 * np.tile(scales, (2, len(ratios))).T
print("anchor的w、h的基础大小(1:1): ")
print(anchors[:, 2:])

areas = anchors[:, 2] * anchors[:, 3]
print("基础面积:" )
print(areas)

anchors[:, 2] = np.sqrt(areas / np.repeat(ratios, len(scales)))
anchors[:, 3] = anchors[:, 2] * np.repeat(ratios, len(scales))
print("宽度:")
print(anchors[:, 2])
print("高度:")
print(anchors[:, 3])

anchors[:, 0::2] -= np.tile(anchors[:, 2] * 0.5, (2, 1)).T
anchors[:, 1::2] -= np.tile(anchors[:, 3] * 0.5, (2, 1)).T
print("一个位置生成的anchor如下")
print("个数为:",anchors.shape[0] )
print(anchors)

 2.为每个位置生成anchor

基本思想还是:anchor的生成都是以原图为基准的

想要实现上述思想,最重要的就是得到特征图与原图的缩放比例(步长),比如stride=8,那么如果原图大小为(image_w,image_h)那么特征图相对于原图尺寸就缩小为(image_w/8 , image_h/8)(计算结果是上采样的)

那么每个anchor的位置是由特征图决定的

x1∈( 0,1,2,3......image_w/8)    y1∈( 0,1,2,3......image_h/8)

生成anchor的位置就是 c_x1 = x1+0.5 ,c_y1 = y1+0.5

因为anchor的生成是以原图为基准的,所以要将anchor在特征图的位置放大到原图,即在原图上生成anchor的位置是 c_x = c_x1 * stride  , c_y = c_y1 * stride

def shift(shape, stride, anchors):
    shift_x = (np.arange(0, shape[1]) + 0.5) * stride
    shift_y = (np.arange(0, shape[0]) + 0.5) * stride

    shift_x, shift_y = np.meshgrid(shift_x, shift_y)

    shifts = np.vstack((
        shift_x.ravel(), shift_y.ravel(),
        shift_x.ravel(), shift_y.ravel()
    )).transpose()

    # add A anchors (1, A, 4) to
    # cell K shifts (K, 1, 4) to get
    # shift anchors (K, A, 4)
    # reshape to (K*A, 4) shifted anchors
    A = anchors.shape[0]
    K = shifts.shape[0]
    all_anchors = (anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2)))
    all_anchors = all_anchors.reshape((K * A, 4))

    return all_anchors

在代码层面上(anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2)))

用到了向量相加的广播机制

向量a1维度是(k,1,4),含义是有K个位置,每个位置1份数据,每份数据4个参数(中心点)

向量a2维度是(1,A,4),含义是1个位置,每个位置A份数据,每份数据4个参数(anchor相对于中心点的位置坐标)

其中k是要在图像的k个位置上生成anchor,A是每个位置生成几个anchor

首先a2要在第0维复制k次(A,4)向量(为每个位置复制)

然后a1要在第1维复制A次(4)向下(为每个位置的每个anchor复制)

3.图片的anchor生成过程

最后输出的形状是 [1, 每层anchor数量之和 , 4]
class Anchors(nn.Module):
    def __init__(self, pyramid_levels=None, strides=None, sizes=None, ratios=None, scales=None):
        super(Anchors, self).__init__()
        #提取的特征
        if pyramid_levels is None:
            self.pyramid_levels = [3, 4, 5, 6, 7]
        #步长,在每层中,一个像素等于原始图像中几个像素
        if strides is None:
            self.strides = [2 ** x for x in self.pyramid_levels]   #这个参数设置我没看懂
        #每层框子的基本边长
        if sizes is None:
            self.sizes = [2 ** (x + 2) for x in self.pyramid_levels]  #这个参数设置我也没看懂
        #长宽比例
        if ratios is None:
            self.ratios = np.array([0.5, 1, 2])
        #边长缩放比例
        if scales is None:
            self.scales = np.array([2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)])

    def forward(self, image):
        #image是原图 shape为 batch,channel,w,h
        #这一步是获得宽和高
        image_shape = image.shape[2:]
        image_shape = np.array(image_shape)
        #‘//’是向下取整 整个式子相当于向上取整,因为不满1步的也要算1步
        #图像大小除以步长
        #在对应的每一层中,原图在该层对应的大小
        image_shapes = [(image_shape + 2 ** x - 1) // (2 ** x) for x in self.pyramid_levels]

        # 创建x1,y1 x2,y2 anchor的位置坐标
        all_anchors = np.zeros((0, 4)).astype(np.float32)

        for idx, p in enumerate(self.pyramid_levels):
            #传入该层anchor的基本边长,生成对应大小的anchor
            anchors = generate_anchors(base_size=self.sizes[idx], ratios=self.ratios, scales=self.scales)
            # 传入生成的anchor,和该层相对于原图的大小
            shifted_anchors = shift(image_shapes[idx], self.strides[idx], anchors)
            # 循环遍历完成之后,all_anchors的shape为 [每层anchor数量之和, 4]
            all_anchors = np.append(all_anchors, shifted_anchors, axis=0)
                    # 最后输出的形状是 [1, 每层anchor数量之和 , 4]
        all_anchors = np.expand_dims(all_anchors, axis=0)

        if torch.cuda.is_available():
            return torch.from_numpy(all_anchors.astype(np.float32)).cuda()
        else:
            return torch.from_numpy(all_anchors.astype(np.float32))

7.dataset

以csvdataset为例

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/344131.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

算法设计与分析(屈婉玲)视频笔记day2

序列求和的方法 数列求和公式 等差、等比数列与调和级数 求和的例子 二分检索算法 二分检索运行实例 2 n 1个输入 比较 t 次的输入个数 二分检索平均时间复杂度 估计和式上界的放大法 放大法的例子 估计和式渐近的界 估计和式渐近的界 小结 • 序列求和基本公式&#xff1a;…

使用 CSS 变量更改多个元素样式

使用 CSS 变量更改多个元素样式 var() 函数用于插入自定义的属性值&#xff0c;如果一个属性值在多处被使用&#xff0c;该方法就很有用。 custom-property-name 是必需的, 自定义属性的名称&#xff0c;必需以 – 开头。 value 可选。备用值&#xff0c;在属性不存在的时候使…

牛客网Python篇数据分析习题(六)

1.某公司计划举办一场运动会&#xff0c;现有运动会项目数据集items.csv。 包含以下字段&#xff1a; item_id&#xff1a;项目编号&#xff1b; item_name:项目名称&#xff1b; location:比赛场地。 有员工报名情况数据集signup.csv。包含以下字段&#xff1a; employee_id&a…

高性能(二)

三、读写分离和分库分表 1.读写分离 1.1 概述 将数据库的读写操作分散到不同的数据库节点上 通常一主多从一台主数据库负责写&#xff0c;多台从数据库负责读。 主库和从库之间会进行数据同步&#xff0c;以保证从库中数据的准确性。 1.2 问题及解决 1.2.1 问题 主从同…

ChatGPT眼中的产品经理是这样的

在玩ChatGPT的时候&#xff0c;突发奇想&#xff0c;ChatGPT对产品经理的认知是啥样呢&#xff1f;于是我找了几个大家都比较关注的产品经理问题&#xff0c;看看ChatGPT是如何回答的。1、产品经理可以干一辈子嘛&#xff1f;2、产品经理的核心竞争力是啥&#xff1f;3、产品经…

【本周特惠课程】深度学习6大模型部署场景(Pytorch+NCNN+MNN+Tengine+TensorRT+微信小程序)速成!...

前言欢迎大家关注有三AI的视频课程系列&#xff0c;我们的视频课程系列共分为5层境界&#xff0c;内容和学习路线图如下&#xff1a;第1层&#xff1a;掌握学习算法必要的预备知识&#xff0c;包括Python编程&#xff0c;深度学习基础&#xff0c;数据使用&#xff0c;框架使用…

操作系统——1.操作系统的概念、定义和目标

目录 1.概念 1.1 操作系统的种类 1.2电脑的组成 1.3电脑组成的介绍 1.4操作系统的概念&#xff08;定义&#xff09; 2.操作系统的功能和目标 2.1概述 2.2 操作系统作为系统资源的管理者 2.3 操作系统作为用户和计算机硬件间的接口 2.3.1用户接口的解释 2.3.2 GUI 2.3.3接…

代码随想录第十一天(459)

文章目录459. 重复的子字符串答案思路暴力破解移动匹配459. 重复的子字符串 也不知道为啥这个提示简单题…… 答案思路 暴力破解 例如&#xff1a;abcabc 移位一次&#xff1a;cabcab 移位两次&#xff1a;bcabca 移位三次&#xff1a;abcabc 现在字符串和原字符串匹配了…

搭建Vue版Ant Design Pro后台管理系统

搭建Vue版Ant Design Pro后台管理系统 此文章通过基于Vue实现的Ant DesignPro脚手架快速构建一个后台管理系统的前端 相关文档链接 1、【Ant Design Pro of Vue 官方文档】2、【Vue 官方文档】3、【Vue Router 官方文档】 Ant Design Pro相关系列文章&#xff1a; 一、AntDesig…

Ansible中常用的模块

目录 一、Ansible Ad-Hoc命令集 1 Ad-hoc 使用场景 2 Ansible的并发特性 3 Ansible-doc用法 4 ansible命令运行方式及常用参数 5 ansible的基本颜色代表 6 ansible中的常用模块 command模块 shell模块 script模块 copy模块 fetch模块 unarchive模块 archive模块…

Spring3之控制反转(IOC)

简介 控制反转(Inversion of Control, 缩写为IoC), 是面向对象编程中的一种设计原则, 可以用来减低计算机代码之间的耦合度;其中最常见的方式叫做依赖注入(Dependency Injection, 简称DI), 还有一种方式叫 “赖查找” (Dependency Lookup); 通过控制反转, 对象在被创建的时候,…

CData Drivers for Acumatica

CData Drivers for Acumatica Acumatica的CData驱动程序为用户提供了使用AcumaticaERP数据的便捷途径&#xff0c;该数据来自商业智能、分析、定制应用程序、报告以及ETL。通过JDBC、ADO.NET和ODBC等标准驱动程序&#xff0c;以及与PowerShell、Power BI、Excel、SSIS等流行应用…

java微信小程序音乐播放器分享系统

随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,音乐播放器小程序被用户普遍使用,为方便用户能够可以随时进行音乐播放器小程序的数据信息管理,特开发了基于音乐播放器小程序…

计算之变:联想问天给中国智能IT基础设施划下新起点

“冥昭瞢暗&#xff0c;谁能极之&#xff1f;冯翼惟象&#xff0c;何以识之&#xff1f;”屈原在《天问》中喊出了心中的困惑&#xff0c;用无数个问题&#xff0c;展现了中国人对世界的探索精神和好奇心。人对时空无限性的追问&#xff0c;伴随的是对有限性的焦灼感。幸好&…

JZ50、JZ57、JZ56

文章目录JZ50 第一个只出现一次的字符题目描述&#xff1a;具体实现&#xff1a;JZ57 和为S的两个数字题目描述&#xff1a;具体实现&#xff1a;JZ56 数组中只出现一次的两个数字题目描述具体实现&#xff1a;JZ50 第一个只出现一次的字符 题源 &#x1f449; 第一个只出现一…

在线预览PDF文件、图片,并且预览地址不显示文件或图片的真实路径。

实现在线预览PDF文件、图片&#xff0c;并且预览地址不显示文件或图片的真实路径。1、vue使用blob流在线预览PDF、图片&#xff08;包括jpg、png等格式&#xff09;。1、按钮的方法&#xff1a;2、方法详细&#xff1a;&#xff08;此方法可以在发起请求时携带token&#xff0c…

Data2Vec:视觉、语音和语言的语境化目标表征的高效自监督学习

Efficient Self-supervised Learning with Contextualized Target Representations for Vision, Speech and Language &#xff08;视觉、语音和语言的语境化目标表征的高效自监督学习&#xff09; 论文&#xff1a;efficient-self-supervised-learning-with-contextualized-t…

【Hello Linux】Linux工具介绍 (gcc/g++ gdb)

作者&#xff1a;小萌新 专栏&#xff1a;Linux 作者简介&#xff1a;大二学生 希望能和大家一起进步&#xff01; 本篇博客简介&#xff1a;介绍Linux的常用工具gcc/g 以及gbd Linux工具介绍gcc / ggcc / g的作用为什么语言要经过这四步才能变为可执行指令gcc / g语法预处理编…

机器学习强基计划8-1:图解主成分分析PCA算法(附Python实现)

目录0 写在前面1 为什么要降维&#xff1f;2 主成分分析原理3 PCA与SVD的联系4 Python实现0 写在前面 机器学习强基计划聚焦深度和广度&#xff0c;加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理&#xff1b;“广”在分析多个机器学习模型&#xf…

MATLAB | 情人节来绘制更立体的玫瑰花吧

又是一年情人节&#xff0c;今年带来一款更有立体感的玫瑰&#xff1a; 曲面的函数表达式来自: http://www.bugman123.com/Math/index.html 这个网站&#xff0c;上面还有很多其他帅气的玩意。 基础绘制 xlinspace(0,1,300); thetalinspace(-2*pi,15*pi,300); [x,theta]meshg…