牛客网Python篇数据分析习题(六)

news2024/11/24 4:27:03

1.某公司计划举办一场运动会,现有运动会项目数据集items.csv。 包含以下字段:
item_id:项目编号;
item_name:项目名称;
location:比赛场地。
有员工报名情况数据集signup.csv。包含以下字段:
employee_id:员工编号;
name:员工姓名;
sex:性别;
department:所属部门;
item_id:报名项目id
请你统计职能部门(functional)中报名标枪(javenlin)的所有员工的员工编号(employee_id)、姓名(name)及性别(sex)。

import pandas as pd

items = pd.read_csv("items.csv", sep=",")
signup = pd.read_csv("signup.csv", sep=",")
pd.set_option("display.unicode.east_asian_width", True)
data = pd.merge(items, signup, how="inner", on="item_id")

print(
    data[(data.department == "functional") & (data.item_name == "javelin")][
        ["employee_id", "name", "sex"]].reset_index(drop=True))

2.某公司计划举办一场运动会,现有运动会项目数据集items.csv。 包含以下字段:
item_id:项目编号;
item_name:项目名称;
location:比赛场地。
有员工报名情况数据集signup.csv。包含以下字段:
employee_id:员工编号;
name:员工姓名;
sex:性别;
department:所属部门;
item_id:报名项目id
请你输出报名的各个项目情况(不包含没人报名的项目)对应的透视表。

import pandas as pd

signup = pd.read_csv("signup.csv")
items = pd.read_csv("items.csv")
x = pd.merge(signup, items, on="item_id")
y = x.pivot_table(
    index=["sex", "department"],
    columns="item_name",
    aggfunc={"employee_id": "size"},
    fill_value=0,)

print(y)

3.现有一个Nowcoder1.csv文件,记录了牛客网的部分用户的个人信息,包含如下字段(字段与字段之间以逗号间隔):
Nowcoder_ID:用户ID
Name:用户名
Level:等级
Achievement_value:成就值
Num_of_exercise:刷题量
Graduate_year:毕业年份
Language:常用语言
另外一个Nowcoder2.csv文件记录了用户的活跃情况,包含如下字段(字段与字段之间以逗号间隔):
Nowcoder_ID:用户ID
Continuous_check_in_days:最近连续签到天数

Number_of_submissions:提交代码次数
Last_submission_time:最后一次提交题目日期
两张表分开查看对于运营同学太困难了,请帮助他通过用户ID将两张表合并输出。

import pandas as pd

pd.set_option("display.width", 300)
pd.set_option("display.max_rows", None)
pd.set_option("display.max_columns", None)
nd1 = pd.read_csv("Nowcoder1.csv")
nd2 = pd.read_csv("Nowcoder2.csv")
df = pd.merge(nd1, nd2, on="Nowcoder_ID")

print(df)

4.现有一个Nowcoder1.csv文件,记录了牛客网的部分用户的个人信息,包含如下字段(字段与字段之间以逗号间隔):
Nowcoder_ID:用户ID
Name:用户名
Level:等级
Achievement_value:成就值
Num_of_exercise:刷题量
Graduate_year:毕业年份
Language:常用语言
另外一个Nowcoder2.csv文件记录了用户的活跃情况,包含如下字段(字段与字段之间以逗号间隔):
Nowcoder_ID:用户ID
Continuous_check_in_days:最近连续签到天数
Number_of_submissions:提交代码次数
Last_submission_time:最后一次提交题目日期
如果你想要的信息各自在两个csv文件中,你该怎么输出?同时输出用户的名字、刷题量和代码提交次数。

import pandas as pd

pd.set_option("display.width", 300)
pd.set_option("display.max_rows", None)
pd.set_option("display.max_columns", None)
nd1 = pd.read_csv("Nowcoder1.csv")
nd2 = pd.read_csv("Nowcoder2.csv")
df = pd.merge(nd1, nd2, on="Nowcoder_ID")

print(df[["Name", "Num_of_exercise", "Number_of_submissions"]])

5.现有某店铺会员消费情况sales.csv。包含以下字段:
user_id:会员编号;
recency:最近一次消费距离当天的天数;
frequency:一段时间内消费的次数;
monetary:一段时间内消费的总金额。
请你统计消费金额最多的前3名用户。

import pandas as pd

sales = pd.read_csv("sales.csv")

print(sales.sort_values(by="monetary", 
      ascending=False).reset_index(drop=True).head(3))

6.现有一个Nowcoder.csv文件,记录了牛客网的部分用户的个人信息,包含如下字段(字段与字段之间以逗号间隔):
Nowcoder_ID:用户ID
Name:用户名
Level:等级
Achievement_value:成就值
Num_of_exercise:刷题量
Graduate_year:毕业年份
Language:常用语言
牛牛在查看这些数据的时候,等级都是混乱的,他想按照1-7级的递增序查看这些用户数据,你能帮他输出一下吗?

import pandas as pd

pd.set_option("display.width", 300) 
pd.set_option("display.max_rows", None)  
pd.set_option("display.max_columns", None)

nd = pd.read_csv("Nowcoder.csv")

print(nd.sort_values(by="Level"))

7.现有某店铺会员消费情况sales.csv。包含以下字段:
user_id:会员编号;
recency:最近一次消费距离当天的天数;
frequency:一段时间内消费的次数;
monetary:一段时间内消费的总金额。
请你分别对每个用户的每个消费特征进行评分。

import pandas as pd

data = pd.read_csv("sales.csv")

data["R_Quartile"] = pd.qcut(
    data["recency"], [0, 0.25, 0.5, 0.75, 1], ["4", "3", "2", "1"]
).astype("int")
data["F_Quartile"] = pd.qcut(
    data["frequency"], [0, 0.25, 0.5, 0.75, 1], ["1", "2", "3", "4"]
).astype("int")
data["M_Quartile"] = pd.qcut(
    data["monetary"], [0, 0.25, 0.5, 0.75, 1], ["1", "2", "3", "4"]
).astype("int")

print(data.head())

8.现有某店铺会员消费情况sales.csv。包含以下字段:
user_id:会员编号;
recency:最近一次消费距离当天的天数;
frequency:一段时间内消费的次数;
monetary:一段时间内消费的总金额。
请你统计最有价值的用户中消费金额最多的前5名用户。

import pandas as pd

data = pd.read_csv("sales.csv")

R = pd.qcut(data["recency"], [0, 0.25, 0.5, 0.75, 1.0], ["4", "3", "2", "1"]).astype(
    str)
F = pd.qcut(data["frequency"], [0, 0.25, 0.5, 0.75, 1.0], ["1", "2", "3", "4"]).astype(
    str)
M = pd.qcut(data["monetary"], [0, 0.25, 0.5, 0.75, 1.0], ["1", "2", "3", "4"]).astype(
    str)
data["RFMClass"] = R + F + M

print(data.head())
print(data[data["RFMClass"] == "444"].sort_values("monetary", ascending=False))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/344126.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

高性能(二)

三、读写分离和分库分表 1.读写分离 1.1 概述 将数据库的读写操作分散到不同的数据库节点上 通常一主多从一台主数据库负责写,多台从数据库负责读。 主库和从库之间会进行数据同步,以保证从库中数据的准确性。 1.2 问题及解决 1.2.1 问题 主从同…

ChatGPT眼中的产品经理是这样的

在玩ChatGPT的时候,突发奇想,ChatGPT对产品经理的认知是啥样呢?于是我找了几个大家都比较关注的产品经理问题,看看ChatGPT是如何回答的。1、产品经理可以干一辈子嘛?2、产品经理的核心竞争力是啥?3、产品经…

【本周特惠课程】深度学习6大模型部署场景(Pytorch+NCNN+MNN+Tengine+TensorRT+微信小程序)速成!...

前言欢迎大家关注有三AI的视频课程系列,我们的视频课程系列共分为5层境界,内容和学习路线图如下:第1层:掌握学习算法必要的预备知识,包括Python编程,深度学习基础,数据使用,框架使用…

操作系统——1.操作系统的概念、定义和目标

目录 1.概念 1.1 操作系统的种类 1.2电脑的组成 1.3电脑组成的介绍 1.4操作系统的概念(定义) 2.操作系统的功能和目标 2.1概述 2.2 操作系统作为系统资源的管理者 2.3 操作系统作为用户和计算机硬件间的接口 2.3.1用户接口的解释 2.3.2 GUI 2.3.3接…

代码随想录第十一天(459)

文章目录459. 重复的子字符串答案思路暴力破解移动匹配459. 重复的子字符串 也不知道为啥这个提示简单题…… 答案思路 暴力破解 例如:abcabc 移位一次:cabcab 移位两次:bcabca 移位三次:abcabc 现在字符串和原字符串匹配了…

搭建Vue版Ant Design Pro后台管理系统

搭建Vue版Ant Design Pro后台管理系统 此文章通过基于Vue实现的Ant DesignPro脚手架快速构建一个后台管理系统的前端 相关文档链接 1、【Ant Design Pro of Vue 官方文档】2、【Vue 官方文档】3、【Vue Router 官方文档】 Ant Design Pro相关系列文章: 一、AntDesig…

Ansible中常用的模块

目录 一、Ansible Ad-Hoc命令集 1 Ad-hoc 使用场景 2 Ansible的并发特性 3 Ansible-doc用法 4 ansible命令运行方式及常用参数 5 ansible的基本颜色代表 6 ansible中的常用模块 command模块 shell模块 script模块 copy模块 fetch模块 unarchive模块 archive模块…

Spring3之控制反转(IOC)

简介 控制反转(Inversion of Control, 缩写为IoC), 是面向对象编程中的一种设计原则, 可以用来减低计算机代码之间的耦合度;其中最常见的方式叫做依赖注入(Dependency Injection, 简称DI), 还有一种方式叫 “赖查找” (Dependency Lookup); 通过控制反转, 对象在被创建的时候,…

CData Drivers for Acumatica

CData Drivers for Acumatica Acumatica的CData驱动程序为用户提供了使用AcumaticaERP数据的便捷途径,该数据来自商业智能、分析、定制应用程序、报告以及ETL。通过JDBC、ADO.NET和ODBC等标准驱动程序,以及与PowerShell、Power BI、Excel、SSIS等流行应用…

java微信小程序音乐播放器分享系统

随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,音乐播放器小程序被用户普遍使用,为方便用户能够可以随时进行音乐播放器小程序的数据信息管理,特开发了基于音乐播放器小程序…

计算之变:联想问天给中国智能IT基础设施划下新起点

“冥昭瞢暗,谁能极之?冯翼惟象,何以识之?”屈原在《天问》中喊出了心中的困惑,用无数个问题,展现了中国人对世界的探索精神和好奇心。人对时空无限性的追问,伴随的是对有限性的焦灼感。幸好&…

JZ50、JZ57、JZ56

文章目录JZ50 第一个只出现一次的字符题目描述:具体实现:JZ57 和为S的两个数字题目描述:具体实现:JZ56 数组中只出现一次的两个数字题目描述具体实现:JZ50 第一个只出现一次的字符 题源 👉 第一个只出现一…

在线预览PDF文件、图片,并且预览地址不显示文件或图片的真实路径。

实现在线预览PDF文件、图片,并且预览地址不显示文件或图片的真实路径。1、vue使用blob流在线预览PDF、图片(包括jpg、png等格式)。1、按钮的方法:2、方法详细:(此方法可以在发起请求时携带token&#xff0c…

Data2Vec:视觉、语音和语言的语境化目标表征的高效自监督学习

Efficient Self-supervised Learning with Contextualized Target Representations for Vision, Speech and Language (视觉、语音和语言的语境化目标表征的高效自监督学习) 论文:efficient-self-supervised-learning-with-contextualized-t…

【Hello Linux】Linux工具介绍 (gcc/g++ gdb)

作者:小萌新 专栏:Linux 作者简介:大二学生 希望能和大家一起进步! 本篇博客简介:介绍Linux的常用工具gcc/g 以及gbd Linux工具介绍gcc / ggcc / g的作用为什么语言要经过这四步才能变为可执行指令gcc / g语法预处理编…

机器学习强基计划8-1:图解主成分分析PCA算法(附Python实现)

目录0 写在前面1 为什么要降维?2 主成分分析原理3 PCA与SVD的联系4 Python实现0 写在前面 机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型&#xf…

MATLAB | 情人节来绘制更立体的玫瑰花吧

又是一年情人节,今年带来一款更有立体感的玫瑰: 曲面的函数表达式来自: http://www.bugman123.com/Math/index.html 这个网站,上面还有很多其他帅气的玩意。 基础绘制 xlinspace(0,1,300); thetalinspace(-2*pi,15*pi,300); [x,theta]meshg…

【历史上的今天】2 月 14 日:第一台通用计算机面世;IBM 成立;Julia 公开发布

整理 | 王启隆 透过「历史上的今天」,从过去看未来,从现在亦可以改变未来。 今天是 2023 年 2 月 14 日,在 1819 年的今天,打字机和第一台 QWERTY 布局键盘的发明者克里斯托弗肖尔斯(Christopher Sholes)出…

API文档自动生成工具

一、参考资料 从Python源码注释,自动生成API文档 二、问题引入 不管是开源还是闭源,要让所有人都能读懂你的代码这太难了,所以文档是很重要的。大部分情况,我们不希望维护一份代码再加上一份文档,这样做很容易造成文…

Springboot扩展点之InitializingBean

前言InitializingBean这个扩展点,其实在Springboot扩展点之BeanPostProcessor中已经简单有所涉及,而这篇文章的将重点分析其功能特性、实现方式和工作原理。功能特性1、Spring中提供了InitializingBean接口,帮助用户实现一些自定义的初始化操…