目录
1 问题背景
1.1计算图(Computational Graph)
1.2 激活函数(Activation Function)引入
1.3 问题引入
2 反向传播(Back Propagation)
2.1 为什么要使用反向传播
2.2 前馈运算(Forward Propagation)过程
2.3 反向传播过程
2.3.1 计算过程
2.3.2 课堂练习
3 在Pytorch中进行前馈和反向传播计算
3.1 Tensor数据类型
3.2 代码实现
3.2.1 实现线性模型
1 问题背景
1.1计算图(Computational Graph)
计算图(Computational Graph)是一种用于表示数学运算的图形模型。在计算图中,每个节点代表一个数学运算,而每条边代表运算之间的输入输出关系。
计算图用于记录和组织复杂的数学运算,可以帮助我们快速理解运算的依赖关系和结构。在机器学习和深度学习中,计算图是一种常用的工具,用于定义和计算模型的损失函数和梯度。
计算图还可以用于求导,通过利用计算图上的梯度进行反向传播,可以快速计算模型的损失函数对于每个参数的导数。因此,计算图不仅提高了计算效率,而且可以方便地实现自动微分和反向传播。
比如下式
用计算图表示
注:MM表示相乘
1.2 激活函数(Activation Function)引入
对于刚刚举例的神经网络计算图,计算机会直接对其进行简化:
这就导致了计算过程中添加的新的权重值变得毫无意义,层数的划分变得多余,导致神经网络的表示能力下降。
为了解决这个问题,我们需要在每一层的输出处应用上一个非线性变换函数(Nonlinear
Function),这样模型就不会被简化了
如果一个神经网络只使用线性变换函数,那么其最终的表示能力仍然有限,因为它们的输出结果是线性的,无法对复杂的数据进行分类或回归。因此,在每一层的输出都应用非线性变换函数,以增强神经网络的表示能力。
非线性变换函数通常也称为激活函数(Activation Function)。常见的激活函数有Sigmoid函数、ReLU函数等。
补充
线性函数与非线性函数的简单区别:线性函数其函数图像是一条直线;非线性函数的函数图像是一条曲线,等等。
1.3 问题引入
对于一个简单线性模型 ,我们可以利用解析式来进行简单的计算。
通过计算图,我们可以直观地看出计算的过程:
然后利用解析式来更新权重:
但是对于复杂的神经网络模型来说,可能同时含有多个𝜔,如果为每个𝜔写解析式来计算,任务会非常繁重,且解析式也会变得很复杂:
复杂的神经网络模型往往具有大量的权重,如果使用手动计算权重导数的方法,这将是一项非常复杂且繁琐的任务。
2 反向传播(Back Propagation)
2.1 为什么要使用反向传播
如果使用手动计算权重导数的方法来计算复杂神经网络模型,将会非常困难。而反向传播(Back Propagation)可以使用链式法则自动计算损失函数对于每个权重的导数,大大减少计算复杂度,使训练神经网络变得更加有效。
除此之外,反向传播还有一个优点:实现最优化,省去了重复求导的步骤,以及更高效地去计算偏导。详情请参考相关链接,这里不展开:
http://t.csdn.cn/igONJ
https://zhuanlan.zhihu.com/p/25081671
2.2 前馈运算(Forward Propagation)过程
简单来说,就是 x和𝜔进行f(x, 𝜔)操作后得出z,然后把z值应用到Loss中去。
比如𝑓 = 𝑥 ∙ 𝜔, 𝑥 = 2, 𝜔 = 3
2.3 反向传播过程
2.3.1 计算过程
其中以下两个局部函数是由z=𝑥 ∙ 𝜔,分别对x和对𝜔求导得到的:
简单来说,就是沿着正方向相反的方向,为每个节点乘上局部导数后,再传递给下一个节点。
2.3.2 课堂练习
(1)计算梯度
答案:-8
(2)计算加上偏差值后的梯度(计算仿射模型的梯度)
答案:2,2
3 在Pytorch中进行前馈和反向传播计算
3.1 Tensor数据类型
3.2 代码实现
3.2.1 实现线性模型
课堂上的案例,补充了些解释:
import torch
x_data = [2.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = torch.Tensor([1.0]) # 创建了一个一维张量,包含单一数值1.0,作为权重初始值
w.requires_grad = True # w=torch.Tensor([1.0])创建了一个张量,然后使用 w.requires_grad = True设置该张量需要求导,于是PyTorch 会记录对该张量的操作,以便在反向传播时进行梯度更新
def forward(x):
return x * w # 注意这里的x已经自动转换为Tensor类型,原本是list类型
def loss(x, y):
y_pred = forward(x)
return (y_pred - y) ** 2
print("predict (before training)", 4, forward(4).item())
for epoch in range(100):
for x, y in zip(x_data, y_data):
l = loss(x, y)
# 反向传播,这句还可以清空释放计算图,避免计算图堆砌在内存中。
# 若在当前backward()后,不执行forward() 而是执行另一个backward(),
# 则需要在当前backward()时,指定保留计算图,backward(retain_graph)
# 换言之,想要保留计算图,则写成backward(retain_graph)
l.backward()
# 使用item将一个张量转换成一个 Python标量,也是为了防止产生计算图
# 一般在进行数学运算时使用grad.data,而在输出梯度数值时使用grad.item()
# 一般梯度只有一个元素,所以使用.item()
# 可以方便地把梯度值转换为一个数字。
print('\tgrad:', x, y, w.grad.item())
# 这句代码用来更新权重
# 这里使用w.grad.data而不是w.grad是为了防止建立计算图,我们只是对数值做修改,而不是对模型做出修改
# 虽然w.data 也是 tensor 类型的数据,
# 但它是不需要 gradient 的,因此不会建立计算图,只是在数值范围上发生变化
w.data = w.data - 0.01 * w.grad.data
w.grad.data.zero_() # 每次反向传播前,需要清空梯度缓存,以避免之前的梯度对当前梯度造成影响。
print("progress:", epoch, l.item()) # 轮数,每轮训练完后对应的loss值,l是tensor类型,所以用item取出值来
print("predict (after training)", 4, forward(4).item())
简单来说,每一轮,数据都会先前馈运算出loss,再反向运算出新的梯度,然后用梯度来更新权重值。