Lecture4 反向传播(Back Propagation)

news2024/12/28 21:21:50

目录

1 问题背景

1.1计算图(Computational Graph)

1.2 激活函数(Activation Function)引入

1.3 问题引入

2 反向传播(Back Propagation)

2.1 为什么要使用反向传播

2.2 前馈运算(Forward Propagation)过程

2.3 反向传播过程

2.3.1 计算过程 

2.3.2 课堂练习

3 在Pytorch中进行前馈和反向传播计算

3.1 Tensor数据类型

3.2 代码实现

3.2.1 实现线性模型


1 问题背景

1.1计算图(Computational Graph)

计算图(Computational Graph)是一种用于表示数学运算的图形模型。在计算图中,每个节点代表一个数学运算,而每条边代表运算之间的输入输出关系。

计算图用于记录和组织复杂的数学运算,可以帮助我们快速理解运算的依赖关系和结构。在机器学习和深度学习中,计算图是一种常用的工具,用于定义和计算模型的损失函数和梯度。

计算图还可以用于求导,通过利用计算图上的梯度进行反向传播,可以快速计算模型的损失函数对于每个参数的导数。因此,计算图不仅提高了计算效率,而且可以方便地实现自动微分和反向传播。

比如下式

图1 一个两层神经网络模型

 用计算图表示

图2 计算图表示

 注:MM表示相乘

1.2 激活函数(Activation Function)引入

对于刚刚举例的神经网络计算图,计算机会直接对其进行简化:

图3 计算图会被简化

 

 这就导致了计算过程中添加的新的权重值变得毫无意义,层数的划分变得多余,导致神经网络的表示能力下降。

  为了解决这个问题,我们需要在每一层的输出处应用上一个非线性变换函数(Nonlinear
Function)
,这样模型就不会被简化了

图4 添加非线性函数防止被简化

  如果一个神经网络只使用线性变换函数,那么其最终的表示能力仍然有限,因为它们的输出结果是线性的,无法对复杂的数据进行分类或回归。因此,在每一层的输出都应用非线性变换函数,以增强神经网络的表示能力。

  非线性变换函数通常也称为激活函数(Activation Function)。常见的激活函数有Sigmoid函数、ReLU函数等。

补充

线性函数与非线性函数的简单区别:线性函数其函数图像是一条直线;非线性函数的函数图像是一条曲线,等等。

1.3 问题引入

对于一个简单线性模型 ,我们可以利用解析式来进行简单的计算。

图5 线性模型,返回预测值

 通过计算图,我们可以直观地看出计算的过程:

图6 左右两幅计算图是等价的

然后利用解析式来更新权重:

图7 随机梯度下降涉及的两个解析式

 但是对于复杂的神经网络模型来说,可能同时含有多个𝜔,如果为每个𝜔写解析式来计算,任务会非常繁重,且解析式也会变得很复杂:

图8 复杂的神经网络不好直接求梯度

  复杂的神经网络模型往往具有大量的权重,如果使用手动计算权重导数的方法,这将是一项非常复杂且繁琐的任务。

2 反向传播(Back Propagation)

2.1 为什么要使用反向传播

  如果使用手动计算权重导数的方法来计算复杂神经网络模型,将会非常困难。而反向传播(Back Propagation)可以使用链式法则自动计算损失函数对于每个权重的导数,大大减少计算复杂度,使训练神经网络变得更加有效。

  除此之外,反向传播还有一个优点:实现最优化,省去了重复求导的步骤,以及更高效地去计算偏导。详情请参考相关链接,这里不展开:

http://t.csdn.cn/igONJ
https://zhuanlan.zhihu.com/p/25081671

2.2 前馈运算(Forward Propagation)过程

图9 前馈运算

简单来说,就是 x和𝜔进行f(x, 𝜔)操作后得出z,然后把z值应用到Loss中去。

比如𝑓 = 𝑥 ∙ 𝜔, 𝑥 = 2, 𝜔 = 3

图10 前馈运算过程

2.3 反向传播过程

2.3.1 计算过程 

图11 反向传播过程

 

其中以下两个局部函数是由z=𝑥 ∙ 𝜔,分别对x和对𝜔求导得到的:

图12 x和𝜔的来源

简单来说,就是沿着正方向相反的方向,为每个节点乘上局部导数后,再传递给下一个节点

图13 反向传播详细过程

2.3.2 课堂练习

 (1)计算梯度

图14 例题1

答案:-8

(2)计算加上偏差值后的梯度(计算仿射模型的梯度) 

图15 例题2

 

答案:2,2

3 在Pytorch中进行前馈和反向传播计算

3.1 Tensor数据类型

图16 Tensor含有两种属性

3.2 代码实现

3.2.1 实现线性模型

课堂上的案例,补充了些解释: 

import torch

x_data = [2.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = torch.Tensor([1.0])  # 创建了一个一维张量,包含单一数值1.0,作为权重初始值
w.requires_grad = True  #  w=torch.Tensor([1.0])创建了一个张量,然后使用 w.requires_grad = True设置该张量需要求导,于是PyTorch 会记录对该张量的操作,以便在反向传播时进行梯度更新


def forward(x):
    return x * w # 注意这里的x已经自动转换为Tensor类型,原本是list类型


def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) ** 2


print("predict (before training)", 4, forward(4).item())
for epoch in range(100):
    for x, y in zip(x_data, y_data):
        l = loss(x, y)

        # 反向传播,这句还可以清空释放计算图,避免计算图堆砌在内存中。
        # 若在当前backward()后,不执行forward() 而是执行另一个backward(),
        # 则需要在当前backward()时,指定保留计算图,backward(retain_graph)
        # 换言之,想要保留计算图,则写成backward(retain_graph)
        l.backward()

        # 使用item将一个张量转换成一个 Python标量,也是为了防止产生计算图
        # 一般在进行数学运算时使用grad.data,而在输出梯度数值时使用grad.item()
        # 一般梯度只有一个元素,所以使用.item()
        # 可以方便地把梯度值转换为一个数字。
        print('\tgrad:', x, y, w.grad.item())

        # 这句代码用来更新权重
        # 这里使用w.grad.data而不是w.grad是为了防止建立计算图,我们只是对数值做修改,而不是对模型做出修改
        # 虽然w.data 也是 tensor 类型的数据,
        # 但它是不需要 gradient 的,因此不会建立计算图,只是在数值范围上发生变化
        w.data = w.data - 0.01 * w.grad.data

        w.grad.data.zero_()  # 每次反向传播前,需要清空梯度缓存,以避免之前的梯度对当前梯度造成影响。

    print("progress:", epoch, l.item())  # 轮数,每轮训练完后对应的loss值,l是tensor类型,所以用item取出值来
print("predict (after training)", 4, forward(4).item())

简单来说,每一轮,数据都会先前馈运算出loss,再反向运算出新的梯度,然后用梯度来更新权重值。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/340260.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Allegro如何更改临时高亮的颜色设置操作指导

Allegro如何更改临时高亮的颜色设置操作指导 在用Allegro做PCB设计的时候,当移动或者高亮某个对象之前,会被临时高亮一个颜色,方便查看,类似下图 运行高亮命令的时候,器件被临时高亮成了白色 软件默认的是白色,如何更改成其它颜色? 具体操作如下 点击Display选择Color…

西瓜书读书笔记—绪论

文章目录机器学习典型的机器学习过程基本术语归纳偏好机器学习 机器学习:致力于研究如果通过计算的手段,利用经验来改善系统自身的性能 在计算机系统中,“经验” 通常以 “数据” 形式存在,因此,机器学习所研究的主要内…

《计算机组成与设计》05. 大而快:层次化存储

文章目录局部性原理存储层次结构存储层次结构示意图传输数据示意图Cache 基础映射方式直接映射全相连映射组相连映射Cache 访问直接映射例题 —— Cache 容量计算组相联映射处理写操作3C 模型Cache 失效问题 —— 通过更改 Cache 块容量,以此通过空间局部性来降低失…

【Linux常用指令合集】

基本的增删改查 ls:显示文件或目录-l:列出文件详细信息l(list)-a:列出当前目录下所有文件及目录,包括隐藏的a(all) mkdir 目录名:创建目录-p:级联创建 cd 目录:切换目录 pwd:显示当…

SpringMVC--视图、RESTful案例、处理AJAX请求

SpringMVC的视图 SpringMVC中的视图是View接口,视图的作用渲染数据,将模型Model中的数据展示给用户 SpringMVC视图的种类很多,默认有转发视图和重定向视图 当工程引入jstl的依赖,转发视图会自动转换为JstlView 若使用的视图技术为…

GitHub个人资料自述与管理主题设置

目录 关于您的个人资料自述文件 先决条件 添加个人资料自述文件 删除个人资料自述文件 管理主题设置 补充:建立一个空白文件夹 关于您的个人资料自述文件 可以通过创建个人资料 README,在 GitHub.com 上与社区分享有关你自己的信息。 GitHub 在个…

【触摸屏功能测试】MQTT_STD本地调试说明-测试记录

1、MQTT简介 MQTT是一种基于发布/订阅模式的“轻量级”通讯协议。它是针对受限的、低带宽的、高延迟的、网络不可靠的环境下的网络通讯设备设计的。 发布是指客户端将消息传递给服务器,订阅是指客户端接收服务器推送的消息。每个消息有一个主题,包含若干…

七大设计原则之迪米特法则应用

目录1 迪米特法则介绍2 迪米特法则应用1 迪米特法则介绍 迪米特原则(Law of Demeter LoD)是指一个对象应该对其他对象保持最少的了解,又叫最少知 道原则(Least Knowledge Principle,LKP),尽量降低类与类之…

30分钟吃掉wandb可视化自动调参

wandb.sweep: 低代码,可视化,分布式 自动调参工具。使用wandb 的 sweep 进行超参调优,具有以下优点。(1)低代码:只需配置一个sweep.yaml配置文件,或者定义一个配置dict,几乎不用编写调参相关代码。(2)可视化…

Django框架之视图和URL

视图和URL 站点管理页面做好了, 接下来就要做公共访问的页面了.对于Django的设计框架MVT. 用户在URL中请求的是视图.视图接收请求后进行处理.并将处理的结果返回给请求者.使用视图时需要进行两步操作 1.定义视图2.配置URLconf 1. 定义视图 视图就是一个Python函数&#xff0c…

没有她的通讯录(C语言实现)

🚀write in front🚀 📝个人主页:认真写博客的夏目浅石. 🎁欢迎各位→点赞👍 收藏⭐️ 留言📝 📣系列专栏:夏目的C语言宝藏 💬总结:希望你看完之…

优劣解距离法TOPSIS——清风老师

TOPSIS法是一种常用的综合评价方法,能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距。 基本过程为先将原始数据矩阵统一指标类型(一般正向化处理)得到正向化的矩阵,再对正向化的矩阵进行标准化处理…

​ICLR 2023 | GReTo:以同异配关系重新审视动态时空图聚合

©PaperWeekly 原创 作者 | 周正阳单位 | 中国科学技术大学论文简介动态时空图数据结构在多种不同的学科中均普遍存在,如交通流、空气质量观测、社交网络等,这些观测往往会随着时间而变化,进而引发节点间关联的动态时变特性。本文的主要…

springboot学习(八十) springboot中使用Log4j2记录分布式链路日志

在分布式环境中一般统一收集日志,但是在并发大时不好定位问题,大量的日志导致无法找出日志的链路关系。 可以为每一个请求分配一个traceId,记录日志时,记录此traceId,从网关开始,依次将traceId记录到请求头…

【C#】[带格式的字符串] 复合格式设置字符串与使用 $ 的字符串内插 | 如何格式化输出字符串

复合格式输出 string name "Fred"; String.Format("Name {0}, hours {1:hh}", name, DateTime.Now);通过指定相同的参数说明符,多个格式项可以引用对象列表中的同一个元素。 例如,通过指定“0x{0:X} {0:E} {0:N}”等复合格式字符…

凸优化学习:PART3凸优化问题(持续更新)

凸优化问题 凸优化问题的广义定义: 目标函数为凸函数约束集合为凸集 一、优化问题 基本用语 一般优化问题的描述: minimize⁡f0(x)subject to fi(x)⩽0,i1,⋯,mhi(x)0,i1,⋯,p(1)\begin{array}{ll} \operatorname{minimize} & f_0(x) \\ \text { s…

Centos7 安装Hadoop3 单机版本(伪分布式版本)

环境版本CentOS-7JDK-8Hadoop-3CentOS-7 服务器设置设置静态IP查看IP配置在/etc/sysconfig/network-scripts/目录下的ifcfg-ens33文件中。[rootHadoop3-master sbin]# cd /etc/sysconfig/network-scripts [rootHadoop3-master network-scripts]# ll 总用量 232 -rw-r--r--. 1 r…

云计算培训靠谱吗?

怎么算靠谱的培训呢? 举个例子: 我想参加云计算培训找个工作,机构满足了我的要求,有工作了,但是不是做云计算相关的。 小强也参加了云计算培训,想学好云计算成为技术大牛,最后专业学得普普通…

java环境配置

java环境配置步骤下载jdk安装jdk配置环境变量通过控制台命令验证配置是否成功大功告成安装教程: https://blog.csdn.net/m0_37220730/article/details/103585266 下载jdk 若不理解JDK/JRE/JVM的关系,可以点此查看初识Java(概念、版本迭代、…

DIN解读

传统的Embedding&MLP架构将用户特征编码进一个固定长度的向量。当推出一个商品时,该架构无法捕捉用户丰富的历史行为中的多样性兴趣与该商品的关联。阿里妈妈团队提出了DIN网络进行改进,主要有如下两点创新: 引入注意力机制来捕捉历史行为…