map底层实现原理

news2025/1/19 11:21:39

目录

  • 一、map数据结构
  • 二、bucket数据结构
  • 三、哈希冲突
  • 四、负载因子
  • 五、渐进式扩容
    • 1.扩容的前提条件
    • 2.增量扩容
    • 3.等量扩容
  • 六、查找过程
  • 七、插入过程
  • 八、Map的value赋值
  • 九、Map的遍历赋值


一、map数据结构

Golang的map使用哈希表作为底层实现,一个哈希表里可以有多个哈希表节点,也即bucket,而每个bucket就保存了map中的一个或一组键值对。

map数据结构由runtime/map.go:hmap定义:

type hmap struct {
    count     int // 当前保存的元素个数
    ...
    B         uint8
    ...
    buckets    unsafe.Pointer // bucket数组指针,数组的大小为2^B
    ...
}

在这里插入图片描述

二、bucket数据结构

bucket数据结构由runtime/map.go:bmap定义:

type bmap struct {
    tophash [8]uint8 //存储哈希值的高8位
    data    byte[1]  //key value数据:key/key/key/.../value/value/value...
    overflow *bmap   //溢出bucket的地址
}

每个bucket可以存储8个键值对。

  • tophash是个长度为8的数组,哈希值相同的键(准确的说是哈希值低位相同的键)存入当前bucket时会将哈希值的高位存储在该数组中,以便后续匹配。
  • data区存放的是key-value数据,存放的顺序是key/key/key/…value/value/value,如此存放是为了节省字节对齐带来的空间浪费。
  • overflow指针指向的是下一个bucket,据此将所有冲突的键连接起来。

注意:上述中data和overflow并不是在结构体中显示定义的,而是直接通过指针运算进行访问的。
在这里插入图片描述

三、哈希冲突

当有两个或以上数量的键被哈希到了同一个bucket时,我们称这些键发生了冲突。Go使用链地址法来解决键冲突。由于每个bucket可以存放8个键值对,所以同一个bucket存放超过8个键值对时就会再创建一个键值对,用类似链表的方式将bucket连接起来。
在这里插入图片描述
bucket数据结构指示下一个bucket的指针称为overflow bucket,意为当前bucket盛不下而溢出的部分。事实上哈希冲突并不是好事情,它降低了存取的效率,好的哈希算法可以保证哈希值的随机性,但冲突过多也是要控制的。

四、负载因子

负载因子用于衡量一个哈希表冲突情况,公式为:
负载因子=键数量/bucket数量

例如,对于一个bucket数量为4,包含4个键值对的哈希表来说,这个哈希表的负载因子为1。
哈希表需要将负载因子控制在合适的大小,超过其阀值需要进行rehash,也即键值对重新组织:

  • 哈希因子过小,说明空间利用率低
  • 哈希因子过大,说明冲突严重,存取效率低

每个哈希表的实现对负载因子容忍程度不同,比如Redis实现中负载因子大于1时就会触发rehash,而Go则在在负载因子达到6.5时才会触发rehash,因为Redis的每个bucket只能存1个键值对,而Go的bucket可能存8个键值对,所以Go可以容忍更高的负载因子。

五、渐进式扩容

1.扩容的前提条件

为了保证访问效率,当新元素将要添加进map时,都会检查是否需要扩容,扩容实际上是以空间换时间的手段。 触发扩容的条件有二个:

1.负载因子 > 6.5时,也即平均每个bucket存储的键值对达到6.5个。
2.overflow数量 > 2^15时,也即overflow数量超过32768时。

2.增量扩容

当负载因子过大时,就新建一个bucket,新的bucket长度是原来的2倍,然后旧bucket数据搬迁到新的bucket。 考虑到如果map存储了数以亿计的key-value,一次性搬迁将会造成比较大的延时,Go采用逐步搬迁策略,即每次访问map时都会触发一次搬迁,每次搬迁2个键值对。
在这里插入图片描述
当前map存储了7个键值对,只有1个bucket。此地负载因子为7。再次插入数据时将会触发扩容操作,扩容了之后再将新插入键写入新的bucket。
在这里插入图片描述
hmap数据结构中oldbuckets成员指身原bucket,而buckets指向了新申请的bucket。新的键值对被插入新的bucket中。 后续对map的访问操作会触发迁移,将oldbuckets中的键值对逐步的搬迁过来。当oldbuckets中的键值对全部搬迁完毕后,删除oldbuckets。
在这里插入图片描述
数据搬迁过程中原bucket中的键值对将存在于新bucket的前面,新插入的键值对将存在于新bucket的后面。

3.等量扩容

所谓等量扩容,实际上并不是扩大容量,buckets数量不变,重新做一遍类似增量扩容的搬迁动作,把松散的键值对重新排列一次,以使bucket的使用率更高,进而保证更快的存取。 在极端场景下,比如不断地增删,而键值对正好集中在一小部分的bucket,这样会造成overflow的bucket数量增多,但负载因子又不高,从而无法执行增量搬迁的情况,如下图所示:
在这里插入图片描述
上图可见,overflow的bucket中大部分是空的,访问效率会很差。此时进行一次等量扩容,即buckets数量不变,经过重新组织后overflow的bucket数量会减少,即节省了空间又会提高访问效率。

六、查找过程

查找过程如下:

1.根据key值算出哈希值
2.取哈希值低位与hmap.B取模确定bucket位置
3.取哈希值高位在tophash数组中查询
4.如果tophash[i]中存储值与哈希值相等,则去找到该bucket中的key值进行比较
5.当前bucket没有找到,则继续从下个overflow的bucket中查找。
6.如果当前处于搬迁过程,则优先从oldbuckets查找
注:如果查找不到,也不会返回空值,而是返回相应类型的0值。

七、插入过程

新元素插入过程如下:

1.根据key值算出哈希值
2.取哈希值低位与hmap.B取模确定bucket位置
3.查找该key是否已经存在,如果存在则直接更新值
4.如果没找到将key,将key插入

八、Map的value赋值

package main

import "fmt"

type Student struct {
	Name string
}

var list map[string]Student

func main() {

	list = make(map[string]Student)

	student := Student{"Aceld"}

	list["student"] = student
	list["student"].Name = "LDB"

	fmt.Println(list["student"])
}

结果:

编译失败,
./test7.go:18:23: cannot assign to struct field list["student"].Name in map

分析:
map[string]Student 的value是一个Student结构值,所以当list[“student”] = student,是一个值拷贝过程。而list[“student”]则是一个值引用。那么值引用的特点是只读。所以对list[“student”].Name = "LDB"的修改是不允许的。

方法一:

package main

import "fmt"

type Student struct {
	Name string
}

var list map[string]Student

func main() {

	list = make(map[string]Student)

	student := Student{"Aceld"}

	list["student"] = student
	//list["student"].Name = "LDB"

    /*
        方法1:
    */
    tmpStudent := list["student"]
    tmpStudent.Name = "LDB"
    list["student"] = tmpStudent

	fmt.Println(list["student"])
}

其中:

    /*
        方法1:
    */
    tmpStudent := list["student"]
    tmpStudent.Name = "LDB"
    list["student"] = tmpStudent

是先做一次值拷贝,做出一个tmpStudent副本,然后修改该副本,然后再次发生一次值拷贝复制回去,list[“student”] = tmpStudent,但是这种会在整体过程中发生2次结构体值拷贝,性能很差。

方法二:

package main

import "fmt"

type Student struct {
	Name string
}

var list map[string]*Student

func main() {

	list = make(map[string]*Student)

	student := Student{"Aceld"}

	list["student"] = &student
	list["student"].Name = "LDB"

	fmt.Println(list["student"])
}

我们将map的类型的value由Student值,改成Student指针。

var list map[string]*Student

这样,我们实际上每次修改的都是指针所指向的Student空间,指针本身是常指针,不能修改,只读属性,但是指向的Student是可以随便修改的,而且这里并不需要值拷贝。只是一个指针的赋值。

九、Map的遍历赋值

package main

import (
    "fmt"
)

type student struct {
    Name string
    Age  int
}

func main() {
    //定义map
    m := make(map[string]*student)

    //定义student数组
    stus := []student{
        {Name: "zhou", Age: 24},
        {Name: "li", Age: 23},
        {Name: "wang", Age: 22},
    }

    //将数组依次添加到map中
    for _, stu := range stus {
        m[stu.Name] = &stu
    }

    //打印map
    for k,v := range m {
        fmt.Println(k ,"=>", v.Name)
    }
}

结果如下:

zhou => wang
li => wang
wang => wang

分析:

foreach中,stu是结构体的一个拷贝副本,所以m[stu.Name]=&stu实际上一致指向同一个指针, 最终该指针的值为遍历的最后一个struct的值拷贝。

正确写法:

package main

import (
    "fmt"
)

type student struct {
    Name string
    Age  int
}

func main() {
    //定义map
    m := make(map[string]*student)

    //定义student数组
    stus := []student{
        {Name: "zhou", Age: 24},
        {Name: "li", Age: 23},
        {Name: "wang", Age: 22},
    }

    // 遍历结构体数组,依次赋值给map
    for i := 0; i < len(stus); i++  {
        m[stus[i].Name] = &stus[i]
    }

    //打印map
    for k,v := range m {
        fmt.Println(k ,"=>", v.Name)
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/26715.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2022-11-20 C++并发编程( 四十四 ) -- 通讯顺序进程 CSP 范型

C并发编程 -- 四十四 前言一、通讯顺序进程 CSP 范型1. 细节分解1. lambda 封装类成员函数和 std::function< > 函数封装器2. 模板和 dynamic_cast< >类型转换二、ATM 示例总结前言 并发编程除了常规的使用锁, 或无锁结构实现某些并发计算, 还有没有其它实现形式?…

controller-informer

推翻了自己的三次理论&#xff0c;最终确定informer流程。自己梳理&#xff0c;有错请提示&#xff0c;以便及时改正 一、流程图 图1为整体流程&#xff0c;图2位细节流程 二、主要组件 Reflector-负责与API-Server进行绑定Delta FIFO-增量先进先出队列Indexer-本地缓存Resour…

Linux--系统基础磁盘管理相关知识详解笔记

1.磁盘知识体系结构 第一个层次&#xff1a;磁盘相关物理知识 内部结构 外部结构 读写数据原理 第二个层次&#xff1a;磁盘阵列知识 磁盘弹性扩展知识 ​ 阵列&#xff1a;将多块磁盘整合为一块 ​ &#xff08;1&#xff09;可以存储更大容量数据 ​ &#xff08;2&#…

[附源码]java毕业设计心理问题咨询预约系统

项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; SSM mybatis Maven Vue 等等组成&#xff0c;B/S模式 M…

docker启动mysql实例之后,docker ps命令查询不到

1.首先拉取mysql,创建并启动实例 #docker pull mysql:5.7 # docker run -p 3306:3306 --name mysql \ -v /mydata/mysql/log:/var/log/mysql \ -v /mydata/mysql/data:/var/lib/mysql \ -v /mydata/mysql/conf:/etc/mysql \ -e MYSQL_ROOT_PASSWORDroot \ -d mysql:5.7…

Softing DTS.monaco 9.03新版发布,带有远程接口、并行诊断和动态VCI处理功能

2022年10月24日&#xff0c;Softing推出了“诊断工具集&#xff08;DTS&#xff09;”的新版本——Softing DTS.monaco 9.03。9.03版的诊断测试仪Softing DTS.monaco包含了很多新功能&#xff0c;将使您的工作变得更加简单。由于集成了一个新的连接插件&#xff08;动态VCI处理…

XCZU19EG_FFVC1760芯片的封装和管脚

首先写这篇文章是因为我有接触到这款芯片&#xff0c;但是在做接口约束时&#xff0c;有许多地方并不是很清楚&#xff0c;因此在这里对官方文档(ug1075)进行了通读&#xff0c;只翻译了我觉得我需要用到和需要了解的地方&#xff0c;具体是什么还需要大家去自己阅读官方文档。…

LeetCode 319 周赛

纪念本狗第三次AK&#xff01;&#xff01;&#xff01; 2469. 温度转换 给你一个四舍五入到两位小数的非负浮点数 celsius 来表示温度&#xff0c;以 摄氏度&#xff08;Celsius&#xff09;为单位。 你需要将摄氏度转换为 开氏度&#xff08;Kelvin&#xff09;和 华氏度&a…

RK3568平台开发系列讲解(图像篇)JPEG图像处理

🚀返回专栏总目录 文章目录 一、JPEG文件格式和libjpeg编译二、libjpeg接口函数三、JPEG文件解析沉淀、分享、成长,让自己和他人都能有所收获!😄 📢我们今天来讲解JPEG图像处理。 一、JPEG文件格式和libjpeg编译 JPEG的后缀名为.jpg的图像文件。对于图像内容和信息相同…

Windows安装docker踩坑

安装过程中出现一下问题&#xff0c;步骤如下 菜鸟教程安装windows docker https://www.runoob.com/docker/windows-docker-install.html 启动后报错wsl2错误&#xff0c;因为本机运行的是wsl1&#xff0c;进行解决 wsl -l -v查看运行的虚-了拟机的版本以及状态 因为默认运…

一文带你学习,动态规划算法

一文带你学习&#xff0c;动态规划算法1.什么是动态规划&#xff08;DP&#xff09;2.青蛙跳台阶问题暴力递归解法自顶向下的递归解法自底向上的动态规划解法3.动态规划的解题套路穷举分析确定边界确定最优子结构写出状态转移方程4.经典线性DP&#xff1a;数字三角形5.01背包&a…

金鸡奖提名电影《巴林塔娜》,主题曲和腾格尔合作是未卜先知吗

在刚刚结束的第三十五届金鸡奖上&#xff0c;由十月天传媒推送的电影《巴林塔娜》&#xff0c;获得了最佳提名奖的荣誉。根据资料显示&#xff0c;十月天传媒是来自北京的一家公司&#xff0c;也是国内最具专业的综合性文化产业运营机构。 话说十月天传媒的董事长袁熙伯先生&am…

Qt OpenGL(二十四)——Qt OpenGL 核心模式-实现彩色三角形

Qt OpenGL(二十四)——Qt OpenGL 核心模式-实现彩色三角形 我们之前在Qt OpenGL 核心模式版本中,看到了Qt关于OpenGL的例程,是一个旋转的彩色三角形,本篇文章我们就使用OpenGL核心模式,实现这个彩色三角形。 图1 旋转的三角形 一、彩色三角形 上一篇文章(Qt OpenGL 核心…

儿童护眼灯AA好还是AAA好?双十二精选国AA儿童护眼灯

儿童护眼灯选择国AA级好&#xff01; 这是为什么呢&#xff1f;我给大家分析一下&#xff0c;简单来说&#xff0c;我国对台灯的质量要求是根据《读写作业台灯性能要求》中&#xff0c;当中将分为国A和国AA级两种标准&#xff0c;主要是对照度和会走的均匀度进行划分的&#x…

失物招领|基于Web的校园失物招领系统的设计与实现

作者主页&#xff1a;编程千纸鹤 作者简介&#xff1a;Java、前端、Pythone开发多年&#xff0c;做过高程&#xff0c;项目经理&#xff0c;架构师 主要内容&#xff1a;Java项目开发、毕业设计开发、面试技术整理、最新技术分享 收藏点赞不迷路 关注作者有好处 引言&#xff…

Haproxy负载均衡集群

目录 一、HAPorxy简介 二、HAPorxy优点 三、理解四层和七层负载均衡 四、HAProxy与LVS的区别 五、使用Haproxy搭建web群集 1、部署2台web服务器 2、编译安装Haproxy 3、客户端访问测试 六、总结 1、HTTP请求的两种方式 2、haproxy配置文件重要参数说明 一、HAPorxy简介…

c语言:初识指针

初识指针一.指针是什么问题一&#xff1a;指针&#xff0c;指针变量&#xff0c;内存&#xff0c;地址&#xff0c;编号的关系问题二&#xff1a;为什么指针大小是4或8字节二.如何使用指针三.指针类型问题三&#xff1a;既然指针是4个字节&#xff0c;那它是如何放下long类型的…

数据库:Centos7安装解压版mysql5.7图文教程,亲测成功

目录 1、卸载Centos7默认自带的mariadb数据库&#xff0c;避免冲突 2、下载解压版mysql并安装 3、配置mysql 4、mysql客户端访问 Centos7安装mysql5.7解压版完整教程避免踩坑&#xff0c;可以把数据目录和系统目录分开设置。 1、卸载Centos7默认自带的mariadb数据库&#xff0c…

Qt5开发从入门到精通——第十二篇一节(Qt5 事件处理及实例——多线程及简单实例)

提示&#xff1a;欢迎小伙伴的点评✨✨&#xff0c;相互学习c/c应用开发。&#x1f373;&#x1f373;&#x1f373; 博主&#x1f9d1;&#x1f9d1; 本着开源的精神交流Qt开发的经验、将持续更新续章&#xff0c;为社区贡献博主自身的开源精神&#x1f469;‍&#x1f680; 文…

菜鸟Linux(3):环境变量

"Oh heiya New World!" 一、什么是环境变量&#xff1f; 谈起环境变量,也许我们在敲代码的层面上并不关心。在链接的时候,我们从来没有告诉编译器,去哪里找动态库去链接;我们也从来没有告诉进程 执行该进程的用户是谁?以及在命令行解释器时&#xff0c;启动一个进程…