Redis—内存淘汰策略

news2025/4/23 16:39:59

记:全体LRU,ttl LRU,全体LFU,ttl LFU,全体随机,ttl随机,最快过期,不淘汰(八种)

 

Redis 实现的是一种近似 LRU 算法,目的是为了更好的节约内存,它的实现方式是在 Redis 的对象结构体中添加一个额外的字段,用于记录此数据的最后一次访问时间。

当 Redis 进行内存淘汰时,会使用随机采样的方式来淘汰数据,它是随机取 5 个值(此值可配置),然后淘汰最久没有使用的那个。

Redis 实现的 LRU 算法的优点:

  • 不用为所有的数据维护一个大链表,节省了空间占用;
  • 不用在每次数据访问时都移动链表项,提升了缓存的性能;

但是 LRU 算法有一个问题,无法解决缓存污染问题,比如应用一次读取了大量的数据,而这些数据只会被读取这一次,那么这些数据会留存在 Redis 缓存中很长一段时间,造成缓存污染。

 

 

Redis 对象头中的 lru 字段,在 LRU 算法下和 LFU 算法下使用方式并不相同。

在 LRU 算法中,Redis 对象头的 24 bits 的 lru 字段是用来记录 key 的访问时间戳,因此在 LRU 模式下,Redis可以根据对象头中的 lru 字段记录的值,来比较最后一次 key 的访问时间长,从而淘汰最久未被使用的 key。

在 LFU 算法中,Redis对象头的 24 bits 的 lru 字段被分成两段来存储,高 16bit 存储 ldt(Last Decrement Time),低 8bit 存储 logc(Logistic Counter)。

  • ldt 是用来记录 key 的访问时间戳;
  • logc 是用来记录 key 的访问频次,它的值越小表示使用频率越低,越容易淘汰,每个新加入的 key 的logc 初始值为 5。

 

注意,logc 并不是单纯的访问次数,而是访问频次(访问频率),因为 logc 会随时间推移而衰减的。

在每次 key 被访问时,会先对 logc 做一个衰减操作,衰减的值跟前后访问时间的差距有关系,如果上一次访问的时间与这一次访问的时间差距很大,那么衰减的值就越大,这样实现的 LFU 算法是根据访问频率来淘汰数据的,而不只是访问次数。访问频率需要考虑 key 的访问是多长时间段内发生的。key 的先前访问距离当前时间越长,那么这个 key 的访问频率相应地也就会降低,这样被淘汰的概率也会更大。

对 logc 做完衰减操作后,就开始对 logc 进行增加操作,增加操作并不是单纯的 + 1,而是根据概率增加,如果 logc 越大的 key,它的 logc 就越难再增加。

所以,Redis 在访问 key 时,对于 logc 是这样变化的:

  1. 先按照上次访问距离当前的时长,来对 logc 进行衰减;
  2. 然后,再按照一定概率增加 logc 的值

 

redis.conf 提供了两个配置项,用于调整 LFU 算法从而控制 logc 的增长和衰减:

  • lfu-decay-time 用于调整 logc 的衰减速度,它是一个以分钟为单位的数值,默认值为1,lfu-decay-time 值越大,衰减越慢;
  • lfu-log-factor 用于调整 logc 的增长速度,lfu-log-factor 值越大,logc 增长越慢。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2340906.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Power BI企业运营分析——数据大屏搭建思路

Power BI企业运营分析——数据大屏搭建思路 欢迎来到Powerbi小课堂,在竞争激烈的市场环境中,企业运营分析平台成为提升竞争力的核心工具。 整合多源数据,实时监控关键指标,精准分析业务,快速识别问题机遇。其可视化看…

oracle将表字段逗号分隔的值进行拆分,并替换值

需求背景:需要源数据变动,需要对历史表已存的字段值根据源数据进行更新。如果是单字段存值,直接根据映射表关联修改即可。但字段里面若存的值是以逗号分割,比如旧值:‘old1,old2,old3’,要根据映射关系调整…

【重走C++学习之路】16、AVL树

目录 一、概念 二、AVL树的模拟实现 2.1 AVL树节点定义 2.2 AVL树的基本结构 2.3 AVL树的插入 1. 插入步骤 2. 调节平衡因子 3. 旋转处理 4. 开始插入 2.4 AVL树的查找 2.5 AVL树的删除 1. 删除步骤 2. 调节平衡因子 3. 旋转处理 4. 开始删除 结语 一、概念 …

597页PPT丨流程合集:流程梳理方法、流程现状分析,流程管理规范及应用,流程绩效的管理,流程实施与优化,流程责任人的角色认知等

流程梳理是通过系统化分析优化业务流程的管理方法,其核心包含四大步骤:①目标确认,明确业务痛点和改进方向;②现状分析,通过流程图、价值流图还原现有流程全貌,识别冗余环节和瓶颈节点;③优化设…

来啦,烫,查询达梦表占用空间

想象一下oracle,可以查dba_segments,但是这个不可靠(达梦官方连说明书都没有) 先拼接一个sql set lineshow off SELECT SELECT ||||OWNER|||| AS OWNER,||||TABLE_NAME|||| AS TABLE_NAME,TABLE_USED_SPACE(||||OWNER||||,||||T…

vue3:十一、主页面布局(修改左侧导航条的样式)

一、样式 1、初始样式 2、 左侧导航栏搭建完成样式 二、实现 1、设置左侧导航栏底色 (1)去掉顶部和左侧导航栏的底色 初始页面效果 顶部与左侧底色样式 将代码中与顶部与左侧的样式删掉 移除后页面效果 加入设定背景色 #f4f6f9 加入底色后颜色展示 (2)去除菜单项底色 初…

opencv(双线性插值原理)

双线性插值是一种图像缩放、旋转或平移时进行像素值估计的插值方法。当需要对图像进行变换时,特别是尺寸变化时,原始图像的某些像素坐标可能不再是新图像中的整数位置,这时就需要使用插值算法来确定这些非整数坐标的像素值。 双线性插值的工…

echarts模板化开发,简易版配置大屏组件-根据配置文件输出图形和模板(vue2+echarts5.0)

实现结果 项目结构 根据我的目录和代码 复制到项目中 echartsTemplate-echarts图形 pie实例 <template><div :id"echartsId"></div> </template> <script> export default {name: ,components: {},mixins: [],props: [echartsId,…

Qt项目——Tcp网络调试助手服务端与客户端

目录 前言结果预览工程文件源代码一、开发流程二、Tcp协议三、Socket四、Tcp服务器的关键流程五、Tcp客户端的关键流程六、Tcp服务端核心代码七、客户端核心代码总结 前言 这期要运用到计算机网络的知识&#xff0c;要搞清楚Tcp协议&#xff0c;学习QTcpServer &#xff0c;学…

4.21 从0开始配置spark-local模式

首先准备好安装包 然后使用命令解压 使用source /etc/profile命令让环境变量生效 输入命令 spark-submit --class org.apache.spark.examples.SparkPi --master local[2] /opt/module/spark-local/examples/jars/spark-examples_2.12-3.1.1.jar 10 即在spark运行了第一个程序…

chili3d调试笔记3 加入c++ 大模型对话方法 cmakelists精读

加入 #include <emscripten/bind.h> #include <emscripten/val.h> #include <nlohmann/json.hpp> 怎么加包 函数直接用emscripten::function&#xff0c;如&#xff1a; emscripten::function("send_to_llm", &send_to_llm); set (CMAKE_C…

go语言八股文

1.go语言的接口是怎么实现 接口&#xff08;interface&#xff09;是一种类型&#xff0c;它定义了一组方法的集合。任何类型只要实现了接口中定义的所有方法&#xff0c;就被认为实现了该接口。 代码的实现 package mainimport "fmt"// 定义接口 type Shape inte…

基于 DeepSeek大模型 开发AI应用的理论和实战书籍推荐,涵盖基础理论、模型架构、实战技巧及对比分析,并附表格总结

以下是基于 DeepSeek大模型 开发AI应用的理论和实战书籍推荐&#xff0c;涵盖基础理论、模型架构、实战技巧及对比分析&#xff0c;并附表格总结&#xff1a; 1. 推荐书籍及内容说明 (1) 《深度学习》&#xff08;Deep Learning&#xff09; 作者&#xff1a;Ian Goodfellow…

从数字化到智能化,百度 SRE 数智免疫系统的演进和实践

1. 为什么 SRE 需要数智免疫系统&#xff1f; 2022 年 10 月&#xff0c;在 Gartner 公布的 2023 年十大战略技术趋势中提到了「数字免疫系统」的概念&#xff0c;旨在通过结合数据驱动的一系列手段来提高系统的弹性和稳定性。 在过去 2 年的时间里&#xff0c;百度基于该…

ArcGIS及其组件抛出 -- “Sorry, this application cannot run under a Virtual Machine.“

产生背景&#xff1a; 使用的是“破解版本”或“被套壳过”的非官方 ArcGIS 版本 破解版本作者为了防止&#xff1a; 被研究破解方式 被自动化抓包/提权/逆向 被企业环境中部署多机使用 通常会加入**“虚拟化环境检测阻断运行”机制** 原因解释&#xff1a; 说明你当前运…

进阶篇 第 5 篇:现代预测方法 - Prophet 与机器学习特征工程

进阶篇 第 5 篇&#xff1a;现代预测方法 - Prophet 与机器学习特征工程 (图片来源: ThisIsEngineering RAEng on Pexels) 在前几篇中&#xff0c;我们深入研究了经典的时间序列统计模型&#xff0c;如 ETS 和强大的 SARIMA 家族。它们在理论上成熟且应用广泛&#xff0c;但有…

影刀填写输入框(web) 时出错: Can not convert Array to String

环境&#xff1a; 影刀5.26.24 Win10专业版 问题描述&#xff1a; [错误来源]行12: 填写输入框(web) 执行 填写输入框(web) 时出错: Can not convert Array to String. 解决方案&#xff1a; 1. 检查变量内容 在填写输入框之前&#xff0c;打印BT和NR变量的值&#xff…

词语关系图谱模型

参数配置说明 sentences, # 分词后的语料&#xff08;列表嵌套列表&#xff09; vector_size100, # 每个词的向量维度 window5, # 词与上下文之间的最大距离&#xff08;滑动窗口大小&#xff09; min_count5, # 忽略出现次数小于5的…

HTTP的请求消息Request和响应消息Response

一&#xff1a;介绍 &#xff08;1&#xff09;定义 service方法里的两个参数 &#xff08;2)过程 Request:获取请求数据 浏览器发送http请求数据&#xff08;字符串&#xff09;&#xff0c;字符串被tomcat解析&#xff0c;解析后tomcat会将请求数据放入request对象 Response:…

C++异步操作 - future async package_task promise

异步 异步编程是一种程序设计范式&#xff0c;​​允许任务在等待耗时操作&#xff08;如I/O、网络请求&#xff09;时暂停执行&#xff0c;转而处理其他任务&#xff0c;待操作完成后自动恢复​​。其核心目标是​​避免阻塞主线程​​&#xff0c;提升程序的并发性和响应速度…