论文网址:Biologically Plausible Brain Graph Transformer
英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用
目录
1. 心得
2. 论文逐段精读
2.1. Abstract
2.2. Introduction
2.3. Preliminaries
2.3.1. Problem Definition
2.3.2. Graph Transformers
2.4. Biologically Plausible Brain Graph Transformer
2.4.1. Network Entanglement-based Node Importance Encoding
2.4.2. Functional Module-Aware Self-Attention
2.5. Experiments
2.5.1. Experimental Setup
2.5.2. Results
2.5.3. Ablation Studies
2.5.4. Comparative Analysis of Node Importance Measurement
2.5.5. Biological Plausibility Analysis
2.6. Related Work
2.6.1. Brain Graph Analysis
2.6.2. Graph Transformers
2.7. Conclusion
1. 心得
(1)慎看,感觉很物理,需要一定基础,什么量子纠缠。我不是很懂纠缠
(2)(题外话)我将diss所有沙壁审稿人,我论文和这篇ICLR2025效果几乎一模一样(对比模型一样数据集一样结果一样),审稿人说我“你的模型二分类才70多太糟糕了”/“几乎没有提升”/“性能平平”,对我复现的论文,从这篇可以看到BrainGNN在ABIDE上就是五十多,GAT也是。审稿人说我“故意压低基线”/“和原论文极大不符,疑似学术造假~”/“怀疑结果真实性”。先四格🐎吗审稿人宝宝们?已读不回是审稿人宝宝们论文都被拒了是吧~
(3)先放表。能不能告诉全世界ABIDE数据集在2025年就是这个β样子:
(4)文尾有drama事件。BNT惨遭无辜炮轰。
2. 论文逐段精读
2.1. Abstract
①Existing works fail to represent brain framework
2.2. Introduction
①(a) Hub and functional modules, and (b) functional connectivity (FC) in different brain regions of ADHD:
2.3. Preliminaries
2.3.1. Problem Definition
①Graph: , with node set
, dege set
, feature matrix
, and
ROIs (nodes)
2.3.2. Graph Transformers
①Transformer block: an attention module and a feed-forward network (FFN)
②Attention mechanism with :
where denotes similarity between queries and keys
③Output of attention blocks:
2.4. Biologically Plausible Brain Graph Transformer
①Rewrite to:
(FM后面是短横线,不是减号)where denotes a network entanglement-based node importance encoding method
②Overall framework of BioBGT:
2.4.1. Network Entanglement-based Node Importance Encoding
①Normalized information diffusion propagator:
where denotes information diffusion propagator,
denotes positive parameter,
is Laplacian matrix,
is the partition function
②von Neumann entropy, to capture global topology and information diffusion process of graphs:
where is the density matrix-based spectral entropy,
denotes the trace operation computing the trace of the product of the density matrix
and its natural logarithm
③Node importance (node entanglement value (VE value)):
where is the
-control graph obtained after the perturbation of node
④To approximate NE value:
where and
is node number and edge number respectively,
⑤Node representation:
where denotes learnable embedding vector specified by
2.4.2. Functional Module-Aware Self-Attention
(1)Community Contrastive Strategy-based Functional Module Extractor
①Updating by
, where
denotes functional module extractor and
is functional module node
belongs to
②Augment graph to
and
by edge drop
③Employing contrastive learning by regarding nodes in the same functional module as positive sample and in the different functional module as negative. They use InfoNCE loss:
where node features are represented as in graph
(2)Updated Self-Attention Mechanism
①Attention module with exponential kernels:
where denotes non-negative kernel,
is dot product,
is linear value function
②Functional module-aware self-attention bound:
where and
are representations of nodes
and
after the functional module extractor
2.5. Experiments
2.5.1. Experimental Setup
(1)ABIDE Dataset
①Subjects: 1009 with 516 ASD and 493 NC
②Brain atlas: Craddock 200
(2)ADNI Dataset
①Subjects: 407 with 190 NC, 170 MCI and 47 AD
②Brain atlas: AAL 90
(3)ADHD-200
①Subjects: 459 with 230 NC and 229 ADHD
②Brain atlas: CC200(但作者在这只用了190个?)
(4)Setting
①Brian graph construction: Pearson correlation
②Threshold applied
③Optimizer: AdamW
④Loss: BCE loss
⑤Data split: 0.8/0.1/0.1
2.5.2. Results
①Performance:
2.5.3. Ablation Studies
①Module ablation:
2.5.4. Comparative Analysis of Node Importance Measurement
①Encoder ablation:
2.5.5. Biological Plausibility Analysis
①The NE and NEff values of 50 randomly selected nodes from a sample in the ABIDE dataset:
②The heatmaps of the average self-attention scores:
2.6. Related Work
2.6.1. Brain Graph Analysis
①虽然我不厨Kan Xuan,也不推BrainNetworkTransformer,但BioBGT说:
无辜的BNT独自承担了一切。BNT原文:
②我很难得看一下相关工作,不要一看就很...(方便起见放中文了,左边BioBGT右边BNT。BNT人家也有在认真聚类好吧。虽然没有觉得BNT牛到哪里去但是给了代码+效果是真的不错所以嘎嘎点赞啊)
2.6.2. Graph Transformers
①介绍了一些相关的
2.7. Conclusion
~