01人工智能基础入门

news2025/4/18 15:06:27

一、AI应用场景和发展历程

1.1行业应用

1、deepdream图像生成、yolo目标检测

2、知识图谱、画风迁移

3、语音识别、计算机视觉

4、用户画像

5、百度人工智能布局

1.2发展历程
人工智能的发展经历了 3 个阶段:
  • 1980年代是正式成形期,尚不具备影响力。
  • 1990-2010年代是蓬勃发展期,诞生了众多的理论和算法,真正走向了实用。
  • 2012年之后是深度学习期,深度学习技术诞生并急速发展,较好的解决了现阶段AI的一些重点问题,并带来了产业界的快速发展。
1.3GPU和CPU比较
1,GPU 加速计算可以将应用程序 计算密集 分的工作负载转移到 GPU ,同时仍由 CPU 运行其余程序代码 。从用户的角度来看, 应用程序的运行速度明显加快。
2,CPU 由专为顺序串行处理而优化的几个核心组成,而 GPU 则拥有一个由 数以千计 的更小、更高效的核心 (专为同时处理多重任务而设计)组成的大规模并行计算架构。
3, CPU 需要很强的通用性来处理各种不同的数据类型,同时又要逻辑判断又会引入大量的分支跳转和中断 的处理。 这些都使得 CPU 的内部结构异常复杂。而 GPU 面对的则是类型高度统一的、相互无依赖的大规模 数据和不需要被打断的纯净的计算环境 GPU 采用了数量众多的计算单元和超长的流水线,但只有非常简单的控制逻辑并省去了Cache 。而 CPU 不仅被 Cache 占据了大量空间,而且还有有复杂的控制逻辑和诸多优化电路,相比之下计算能力只是CPU 很小的一部分。

CPU 擅长逻辑控制,串行的运算对比,通用类型数据运算不同, GPU 擅长的是大规 模并发计算算 ,这也正是密码 破解等所需要的。所以GPU除了图像处理,也越来越多的参与到计算当中来。

二、人工智能主要分支

2.1 机器学习

机器学习是从数据中自动分析获得模型,并利用模型对未知数据进行预测

机器学习是从人工智能中产生的一个重要学科分支,是实现智能化的关键

经典定义:利用经验改善系统自身的性能

随着该领域的发展,目前主要研究智能数据分析的理论和算法,并已成为智能数据分析技术的源泉之一

2.2深度学习

深度学习通过组合低层特征形成更加抽象的高层表示属性类别,以发现数据的分布式特征表示。

http://playground.tensorflow.org

增加层数:通过更抽象的概念识别物体,器官层,分子层,原子层
增加结点数:增加同一层物质的种类
 2.3机器学习vs深度学习

三、机器学习工作流程

1.获取数据 2.数据预处理 3.特征工程 4.机器学习(模型训练) 5.模型评估

四、机器学习算法分类

第一列叫标签,每一列叫特征,每一行叫样本

训练集就是指历史数据,可以理解为课堂作业,既能看到特征数据也能看到标签,通过训练集学习内在规律

测试集就是考试,只能看到特征数据,看不到标签,通过考试预测标签

4.1有监督学习

1.监督学习:有标签,监督就是指有标签,有标准答案

有监督定义:输入数据是由输入特征值和目标值所组成,即输入的训练数据 为有标签的。

  • 有监督学习1:回归问题

回归问题:给定D维输入变量x ,并且每一个输入矢量x都有对应的值y,要求对于新来的数据预测它对应的连续的目   标值t。 例如:预测房价,根据样本集拟合出一条连续曲线

  • 有监督学习2:分类问题

回归问题和分类问题的本质一样,都是针对输入做出输出预测,其区别在于输出预测的类型。 分类问题:给定一个新的模式,根据训练集推断它所 对应的类别(如:+1 ,-1 ),是一种定性输出,也叫离散变量预测,而回归问题,给定一个新的模式,根据训练集推断它所对应的输出值(实数)是多少,是一种定量输出,也叫连续变量预测。 如果预测的结果为连续的值,是回归问题; 如为离散的值,是分类问题 例如:根据肿瘤特征判断良性还是恶性,得到的是结   果是“ 良性”或者“恶性” ,是离散的;温度是连续的值,所以是回归。

总结:训练结果跟数据集质量,分布有关。俗话说,"垃圾进垃圾出"

分类问题,结果是固定的,比如良性、恶性等;回归问题是预测一个数值。、

  • 监督学习:有标签
  • 任务:分类任务和回归任务
4.2无监督学习

无监督定义:输入数据没有被标记,也没有确定的结果,即样本数据类别未知,没有标签,需要根据样本间的相似性对样本集进行聚类,以发现事物内部结构及相互关系

第一类:基于样本间相似性度量的聚类方法:设法 定出不同类别的核心或初始内核,然后依 据样本与核心之间的相似性度量将样本聚 集成不同的类别。

第二类:基于概率密度函数估计的直接方法:指 设法找到各类别在特征空间的分布参数, 再进行分类。

无监督学习是在寻找数据集中的规律性,这种规律性并不一定要达到划分数据集 的目的,也就是说不一定要“分类”。 这一点是比有监督学习方法的用途要广。譬如分析一堆数据的主分量,或分析数 据集有什么特点都可以归于非监督学习方法的范畴。

4.3半监督学习

半监督学习:训练集数据一部分有标签而其余部分无标签,即训练集同时包含有标记样 本和无标记样本。

4.4强化学习

强化学习定义:实质是make decisions 问题,即自动进行决策,并且可以做连续决策希望一段时间后获得最多的累计奖励。 主要包含四个要素 :agent ,环境状态,行动,奖励

强化学习案例1 : 小孩想要走路,但在这之前,他需要先站起来,站起来 之后还要保持平衡,接下来还要先迈出一条腿,是左腿还是右腿,迈出一步后还要迈出下一步。 小孩就是 agent ,他试图通过采取行动 (即行走)来操 纵环境 (行走的表面),并且从一个状态转变到另一个 状态 (即他走的每一步),当他完成任务的子任务(即走了几步)时,孩子得到奖励 (给巧克力吃),并且当他不能走路时,就不会给巧克力。

强化学习案例2 : 一个 autonomous agent 要学习如何打 tennis(网球)比赛,它需要考虑这些动作: serves, returns, and volleys ,这些行为会影响谁赢谁输。 执行每一个动作都是在一个激励下进行的,就是要赢得比赛。   为了实现比分最大化,它需要遵循一个策略。

强化学习案例3 : Manufacturing 一家日本公司 Fanuc(发那科) ,工厂机器人 在拿起一个物体时,会捕捉这个过程的视频,记住它每次操作的行动,  操作成功还是失败了,积累经验,下一次可以更快更准地采取行动。

强化学习与监督学习的区别:

蓝色代表强化学习,紫红色代表监督学习,纵轴代表错误率的下降趋势

4.5 总结:

4.6 扩展

批量学习和在线学习

在线学习:需要接收持续的数据流 (例如股票价格)同时对数据流的 变化做出快速或自主的反应。

如果你的计算资源有限,在线学习 系统同样也是一个很好的选择:新的数据实例一旦经过系统的学习, 就不再需要,你可以将其丢弃(除 非你想要回滚到前一个状态,再“ 重新学习”数据),这可以节省大 量的空间。 挑战:学习率,不良数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2329472.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

进程和内存管理

目录 一.进程的基本信息 1.1进程的定义 1.2进程的特征 1.3进程的组成 1.4线程产生的背景 1.5线程的定义 1.6进程与线程的区别 1.7进程的类别 1.8进程的优先级 1.8.1进程优先级的概念 1.8.2PRI和NI 1.9僵尸进程 1.9.1僵尸进程的定义 1.9.2僵尸进程产生的原因 1.9…

React 项目使用 pdf.js 及 Elasticpdf 教程

摘要:本文章介绍如何在 React 中使用 pdf.js 及基于 pdf.js 的批注开发包 Elasticpdf。简单 5 步可完成集成部署,包括数据的云端同步,示例代码完善且简单,文末有集成代码分享。 1. 工具库介绍与 Demo 1.1 代码包结构 ElasticP…

性能测试之jmeter的基本使用

简介 Jmeter是Apache的开源项目,基于Java开发,主要用于进行压力测试。 优点:开源免费、支持多协议、轻量级、功能强大 官网:https://jmeter.apache.org/index.html 安装 安装步骤: 下载:进入jmeter的…

CAD插件实现:所有文字显示到列表、缩放、编辑——CAD-c#二次开发

当图中有大量文字,需要全部显示到一个列表时并缩放到需要的文字时,可采用插件实现,效果如下: 附部分代码如下: private void BtnSelectText_Click(object sender, EventArgs e){var doc Application.DocumentManager.…

Oracle数据库数据编程SQL<8 文本编辑器Notepad++和UltraEdit(UE)对比>

首先,用户界面方面。Notepad是开源的,界面看起来比较简洁,可能更适合喜欢轻量级工具的用户。而UltraEdit作为商业软件,界面可能更现代化,功能布局更复杂一些。不过,UltraEdit支持更多的主题和自定义选项&am…

Linux驱动开发练习案例

1 开发目标 1.1 架构图 操作系统:基于Linux5.10.10源码和STM32MP157开发板,完成tf-a(FSBL)、u-boot(SSBL)、uImage、dtbs的裁剪; 驱动层:为每个外设配置DTS并且单独封装外设驱动模块。其中电压ADC测试,采用linux内核…

Apache httpclient okhttp(1)

学习链接 Apache httpclient & okhttp(1) Apache httpclient & okhttp(2) httpcomponents-client github apache httpclient文档 apache httpclient文档详细使用 log4j日志官方文档 【Java基础】- HttpURLConnection…

微信小程序—路由

关于 app.json 中的配置 app.json 主要是对整个小程序进行一个全局的配置。 pages:在这个配置项目中,就可以配置小程序里面的页面,小程序默认显示 pages 数组中的第一个页面windows:主要配置和导航栏相关的 当然,在…

人工智能驱动的数据仓库优化:现状、挑战与未来趋势

1. 引言:数据仓库的演进与人工智能驱动优化的兴起 现代数据仓库的复杂性和规模正以前所未有的速度增长,这主要是由于数据量、种类和产生速度的急剧增加所致。传统的数据仓库技术在应对这些现代数据需求方面显得力不从心,这催生了对更先进解决…

LVS高可用负载均衡

一、项目图 二、主机规划 主机系统安装应用网络IPclientredhat 9.5无NAT192.168.72.115/24lvs-masterredhat 9.5ipvsadm,keepalivedNAT192.168.72.116/24 VIP 192.168.72.100/32lvs-backupredhat 9.5ipvsadm,keepalivedNAT192.168.72.117/24 VIP 192.168…

脑影像分析软件推荐 | JuSpace

目录 1. 软件界面 2.工具包功能简介 3.软件安装注意事项 参考文献: Dukart J, Holiga S, Rullmann M, Lanzenberger R, Hawkins PCT, Mehta MA, Hesse S, Barthel H, Sabri O, Jech R, Eickhoff SB. JuSpace: A tool for spatial correlation analyses of magne…

逛好公园的好处

逛公园和软件开发看似是两个不同的活动,但它们之间存在一些有趣的关联和相互促进的关系: 激发创造力:公园中的自然景观、多样的人群以及各种活动能为开发者带来新的灵感和创意。软件开发过程中,从公园中获得的创意可以帮助开发者设…

【网络安全】 防火墙技术

防火墙是网络安全防御的重要组成部分,它的主要任务是阻止或限制不安全的网络通信。在这篇文章中,我们将详细介绍防火墙的工作原理,类型以及如何配置和使用防火墙。我们将尽可能使用简单的语言和实例,以便于初学者理解。 一、什么…

文档的预解析

1. 预解析的核心目标 浏览器在正式解析(Parsing)HTML 前,会启动一个轻量级的 预解析器(Pre-Parser),快速扫描文档内容,实现: 提前发现并加载关键资源(如 CSS、JavaScrip…

记一次表格数据排序优化(一)--排序30000条数据有多卡

目录 需求 第一次尝试 运行环境 思路 存储 排序 触发排序操作 如何实现高效的排序 关键1 关键2 关键3 磨刀不误砍柴工 关键4 代码 效果 卡顿原因分析 原因1 原因2 第二次尝试 需求 1 我的qt程序通过表格显示30000条数据。数据来自udp,udp每隔10秒…

图形渲染中的定点数和浮点数

三种API的NDC区别 NDC全称,Normalized Device Coordinates Metal、Vulkan、OpenGL的区别如下: featureOpenGL NDCMetal NDCVulkan NDC坐标系右手左手右手z值范围[-1,1][0,1][0,1]xy视口范围[-1,1][-1,1][-1,1] GPU渲染的定点数和浮点数 定点数类型&a…

【深度学习】CNN简述

文章目录 一、卷积神经网络(CNN)二、CNN结构特性1. CNN 典型结构2. 局部连接3. 权重共享4.空间或时间上的次采样 三、理解层面 一、卷积神经网络(CNN) 卷积神经网络(Convolutional Neural Network,CNN)是一种用于处理…

强化学习课程:stanford_cs234 学习笔记(3)introduction to RL

文章目录 前言7 markov 实践7.1 markov 过程再叙7.2 markov 奖励过程 MRP(markov reward process)7.3 markov 价值函数与贝尔曼方程7.4 markov 决策过程MDP(markov decision process)的 状态价值函数7.4.1 状态价值函数7.4.2 状态…

紫檀博物馆一游与软件开发

今天去逛了中国紫檀博物馆,里边很多层展品,也有一些清代的古物,檀木,黄花梨木家具和各种摆件,馆主陈丽华女士也是发心复原、保留和弘扬中国的传统文化,和西游记唐僧扮演者迟成瑞先生一家。 每一件展品都精…

RocketMQ初认识

ProducerCustomerNameServer: Broker的注册服务发现中心BrokerServer:主要负责消息的存储、投递和查询以及服务高可用保证 RocketMQ的集群部署: 单个master的分支多个Master 模式:集群中有多个 Master 节点,彼此之间相互独立。生产者可以将消…