【动态规划】风扫枯杨,满地堆黄叶 - 9. 完全背包问题

news2025/2/12 6:29:38

在这里插入图片描述

本篇博客给大家带来的是完全背包问题之动态规划解法技巧.
🐎文章专栏: 动态规划
🚀若有问题 评论区见
欢迎大家点赞 评论 收藏 分享
如果你不知道分享给谁,那就分享给薯条.
你们的支持是我不断创作的动力 .

王子,公主请阅🚀

  • 要开心
    • 要快乐
      • 顺便进步
  • 1. 完全背包
  • 2. 零钱兑换

要开心

要快乐

顺便进步

1. 完全背包

题目链接: DP42 【模板】完全背包

题目内容:
描述
你有一个背包,最多能容纳的体积是V。

现在有n种物品,每种物品有任意多个,第i种物品的体积为
vi ,价值为wi 。

(1)求这个背包至多能装多大价值的物品?
(2)若背包恰好装满,求至多能装多大价值的物品?
输入描述:
第一行两个整数n和V,表示物品个数和背包体积。
接下来n行,每行两个数

vi 和 wi,表示第i种物品的体积和价值。
1≤n,V≤1000

输出描述:
输出有两行,第一行输出第一问的答案,第二行输出第二问的答案,如果无解请输出0。

解题须知:
完全背包问题与01背包问题的区别:
01背包问题中一种物品只能选一个.
完全背包问题种一种物品能选多个.

第一 先解决第一问

1. 状态表示
dp[i][j]表示从前 i 个物品中选,总体积不超过 j,所有选法中能选出的最大价值.

2. 状态转移方程
与01背包问题一样,
根据最后一个物品的情况来划分问题:
在这里插入图片描述
最后一个物品不选:dp[i][j] = dp[i-1][j];
选一个: dp[i][j] = dp[i-1][j-v[i]] + w[i];
选两个: dp[i][j] = dp[i-1][j-2×v[i]] + 2×w[i];

选k个: dp[i][j] = dp[i-1][j-k×v[i]] + k×w[i];

上述多种情况求最大值:
dp[i][j] = max(dp[i-1][j],dp[i-1][j-v[i]]+w[i],dp[i-1][j-2×v[i]] + 2×w[i],…,dp[i-1][j-k×v[i]] + k×w[i]); ①
dp[i][j-v[i]] + w[i] = max(dp[i-1][j-v[i]]+w[i],dp[i-1][j-2×v[i]] + 2×w[i],…,dp[i-1][j-h×v[i]] + h×w[i]); ②

先说结论: ①式中的k 一定等于②中的h.这是为什么呢?
在状态表示中,我们定义dp[i][j]表示从前 i 个物品中选,总体积不超过 j ,所有选法中能选出的最大价值.
随着所选物品越多, j 一定会趋于0, 无论是①还是②都一定是这样的, 所以k = h;
状态转移方程只能是有限个递推公式,所以需要化简上述式子,那么由①和②可得:
dp[i][j] = max(dp[i-1][j],dp[i][j-v[i]]+w[i]);
dp[i][j-v[i]]+w[i]式子需要保证 j >= v[i]

3. 初始化
多创建一行一列,处理两个细节:
Ⅰdp表与原数组的下标对应关系:
不做任何处理时是: i – i-1
但此题, 读入有效元素是从下标1开始的,
所以 i – i
Ⅱ初始化虚拟节点:
第一行,根据定义 当 i = 0时,没有物品,无论怎么选最大价值都是0.
第一列(除第一个位置)无需初始化, 因为 j >= v[i] 只有dp[0][0]满足.
在这里插入图片描述

4. 填表顺序
看状态转移方程,
要想得到dp[i][j] 就得知道dp[i-1][j]和dp[i][j-v[i]]+w[i];
所以从上往下填写每一行
每一行从左往右填写.

5. 返回值
根据状态表示和题目要求
打印 dp[n][V]即可.

6. 优化
在这里插入图片描述

第二 解决第二问

1. 状态表示
dp[i][j]表示从前 i 个物品中选,总体积等于 j,所有选法中能选出的最大价值.

2. 状态转移方程

根据最后一个物品的情况来划分问题:
在这里插入图片描述
最后一个物品不选:dp[i][j] = dp[i-1][j];
选一个: dp[i][j] = dp[i-1][j-v[i]] + w[i];
选两个: dp[i][j] = dp[i-1][j-2×v[i]] + 2×w[i];

选k个: dp[i][j] = dp[i-1][j-k×v[i]] + k×w[i];

上述多种情况求最大值:
dp[i][j] = max(dp[i-1][j],dp[i-1][j-v[i]]+w[i],dp[i-1][j-2×v[i]] + 2×w[i],…,dp[i-1][j-k×v[i]] + k×w[i]); ①
dp[i][j-v[i]] + w[i] = max(dp[i-1][j-v[i]]+w[i],dp[i-1][j-2×v[i]] + 2×w[i],…,dp[i-1][j-h×v[i]] + h×w[i]); ②

先说结论: ①式中的k 一定等于②中的h.这是为什么呢?
在状态表示中,我们定义dp[i][j]表示从前 i 个物品中选,总体积不超过 j ,所有选法中能选出的最大价值.
随着所选物品越多, j 一定会趋于0, 无论是①还是②都一定是这样的, 所以k = h;
状态转移方程只能是有限个递推公式,所以需要化简上述式子,那么由①和②可得:
dp[i][j] = max(dp[i-1][j],dp[i][j-v[i]]+w[i]);
dp[i][j-v[i]]+w[i]式子需要保证 j >= v[i]

第二问需要多考虑一个细节, 所选择的 i 物品并不一定能够保证 j-v[i] 恰好等于0, 有可能背包体积有剩余.
当背包体积有剩余时,规定dp[i][j-v[i]] = -1;
于是需要满足条件:
j - v[i] >= 0 && dp[i][j-v[i]] != -1;
3. 初始化
多创建一行一列,处理两个细节:
Ⅰdp表与原数组的下标对应关系:
不做任何处理时是: i – i-1
但此题, 读入有效元素是从下标1开始的,
所以 i – i
Ⅱ初始化虚拟节点:
第一行,根据定义 当 i = 0且j >= 1时,没有物品可选, 意味着背包体积有剩余.故dp[0][j] = -1;
第一列(除第一个位置)无需初始化, 因为 j >= v[i] 只有dp[0][0]满足.
在这里插入图片描述

4. 填表顺序
看状态转移方程,
要想得到dp[i][j] 就得知道dp[i-1][j]和dp[i][j-v[i]]+w[i];
所以从上往下填写每一行
每一行从左往右填写.

5. 返回值
根据状态表示和题目要求
打印 dp[n][V]即可.

6. 优化
在这里插入图片描述

第三 代码实现

//优化前:
        // Scanner in = new Scanner(System.in);
        // // 注意 hasNext 和 hasNextLine 的区别
        // int N = 1010;
        // int[][] dp = new int[N][N];
        // int[][] dp2 = new int[N][N];
        // int[] v = new int[N];
        // int[] w = new int[N];
        // int n = in.nextInt();
        // int V = in.nextInt();
        // for(int i = 1;i <= n;i++) {
        //     v[i] = in.nextInt();
        //     w[i] = in.nextInt();
        // }
        // //解决第一问
        // for(int i = 1;i <= n;++i) {
        //     for(int j = 0;j <= V;++j) {//j需要从0开始,因为初始化的时候并没有考虑第一列的全部位置,只考虑了第一列的第一个位置.
        //         dp[i][j] = dp[i-1][j];
        //         if(j >= v[i]) {
        //             dp[i][j] = Math.max(dp[i][j],dp[i][j-v[i]]+w[i]);
        //         }
        //     }
        // }
        // System.out.println(dp[n][V]);
        // //解决第二问
        // for(int i = 1;i <= V;++i) {
        //     dp2[0][i] = -1;
        // }
        // for(int i = 1;i <= n;++i) {
        //     for(int j = 0;j <= V;++j) {//j需要从0开始,因为初始化的时候并没有考虑第一列的全部位置,只考虑了第一列的第一个位置.
        //         dp2[i][j] = dp2[i-1][j];
        //         if(j >= v[i] && dp2[i][j-v[i]] != -1) {
        //             dp2[i][j] = Math.max(dp2[i][j],dp2[i][j-v[i]]+w[i]);
        //         }
        //     }
        // }
        // System.out.println(dp2[n][V] == -1 ? 0 : dp2[n][V]);

        //优化后:
        Scanner in = new Scanner(System.in);
        // 注意 hasNext 和 hasNextLine 的区别
        int N = 1010;
        int[] dp = new int[N];
        int[] dp2 = new int[N];
        int[] v = new int[N];
        int[] w = new int[N];
        int n = in.nextInt();
        int V = in.nextInt();
        for(int i = 1;i <= n;i++) {
            v[i] = in.nextInt();
            w[i] = in.nextInt();
        }
        //解决第一问
        for(int i = 1;i <= n;++i) {
            for(int j = 0;j <= V;++j) {//j需要从0开始,因为初始化的时候并没有考虑第一列的全部位置,只考虑了第一列的第一个位置.
                if(j >= v[i]) {
                    dp[j] = Math.max(dp[j],dp[j-v[i]]+w[i]);
                }
            }
        }
        System.out.println(dp[V]);
        //解决第二问
        for(int i = 1;i <= V;++i) {
            dp2[i] = -1;
        }
        for(int i = 1;i <= n;++i) {
            for(int j = 0;j <= V;++j) {//j需要从0开始,因为初始化的时候并没有考虑第一列的全部位置,只考虑了第一列的第一个位置.
                dp2[j] = dp2[j];
                if(j >= v[i] && dp2[j-v[i]] != -1) {
                    dp2[j] = Math.max(dp2[j],dp2[j-v[i]]+w[i]);
                }
            }
        }
        System.out.println(dp2[V] == -1 ? 0 : dp2[V]);

    }
}

2. 零钱兑换

题目链接: 322. 零钱兑换

题目内容:
给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1
示例 2:

输入:coins = [2], amount = 3
输出:-1
示例 3:

输入:coins = [1], amount = 0
输出:0

第一 动态规划

1. 状态表示
dp[i][j]表示从前 i 个硬币中选,总金额等于 j,所有选法中能选出的最少硬币个数.

2. 状态转移方程

根据最后一个物品的情况来划分问题:
在这里插入图片描述
最后一个物品不选:dp[i][j] = dp[i-1][j];
选一个: dp[i][j] = dp[i-1][j-coins[i]] + 1;
选两个: dp[i][j] = dp[i-1][j-2×coins[i]] + 2;

选k个: dp[i][j] = dp[i-1][j-k×coins[i]] + k;

上述多种情况求最小值:
dp[i][j] = min(dp[i-1][j],dp[i-1][j-coins[i]]+1,dp[i-1][j-2×coins[i]] + 2,…,dp[i-1][j-k×coins[i]] + k); ①
dp[i][j-v[i]] + 1 = min(dp[i-1][j-coins[i]]+1,dp[i-1][j-2×coins[i]] + 2,…,dp[i-1][j-h×coins[i]] + h); ②

先说结论: ①式中的k 一定等于②中的h.这是为什么呢?
在状态表示中,我们定义dp[i][j]表示从前 i 个硬币中选,总金额不超过 j ,所有选法中能选出的最少硬币个数.
随着所选硬币越多, j 一定会趋于0, 无论是①还是②都一定是这样的, 所以k = h;
状态转移方程只能是有限个递推公式,所以需要化简上述式子,那么由①和②可得:
dp[i][j] = max(dp[i-1][j],dp[i][j-coins[i]]+1);
dp[i][j-coins[i]]+1式子需要保证 j >= v[i]

还需要多考虑一个细节, 所选择的 i 硬币并不一定能够保证 j-coins[i] 恰好等于0, 有可能背包有剩余.
当背包有剩余时,规定dp[i][j-硬币[i]] = 0x3f3f3f3f;
于是需要满足条件:
j - coins[i] >= 0 && dp[i][j-coins[i]] != 0x3f3f3f3f;
3. 初始化
多创建一行一列,处理两个细节:
Ⅰdp表与原数组的下标对应关系:
i – i-1
Ⅱ初始化虚拟节点:
第一行,根据定义 当 i = 0且j >= 1时,没有硬币可选, 意味着背包有剩余.故dp[0][j] = 0x3f3f3f3f;
第一列(除第一个位置)无需初始化, 因为 j >= coins[i] 只有dp[0][0]满足.
在这里插入图片描述

4. 填表顺序
看状态转移方程,
要想得到dp[i][j] 就得知道dp[i-1][j]和dp[i][j-coins[i]]+1;
所以从上往下填写每一行
每一行从左往右填写.

5. 返回值
根据状态表示和题目要求
return dp[coins.length][amount]即可.

6. 优化
在这里插入图片描述

第二 代码实现

class Solution {
    public int coinChange(int[] coins, int amount) {
        //优化前:
        // int n = coins.length;
        // int[][] dp = new int[n+1][amount+1];
        // //2.初始化
        // for(int i = 1;i <= amount;++i) {
        //     dp[0][i] = Integer.MAX_VALUE;
        // }  
        // //3.填表
        // for(int i = 1;i <= n;++i) {
        //     for(int j = 0;j <= amount;++j) {//j需要从0开始,因为初始化的时候并没有考虑第一列的全部位置,只考虑了第一列的第一个位置.
        //         dp[i][j] = dp[i-1][j];
        //         if(j >= coins[i-1] && dp[i][j-coins[i-1]] != Integer.MAX_VALUE) {
        //             dp[i][j] = Math.min(dp[i][j],dp[i][j-coins[i-1]]+1);
        //         }
        //     }
        // }
        // return dp[n][amount] == Integer.MAX_VALUE ? -1 : dp[n][amount];

        //优化后:
        int n = coins.length;
        int[] dp = new int[amount+1];
        //2.初始化
        for(int i = 1;i <= amount;++i) {
            dp[i] = 0x3f3f3f3f;
        }  
        //3.填表
        for(int i = 1;i <= n;++i) {
            for(int j = 0;j <= amount;++j) {//j需要从0开始,因为初始化的时候并没有考虑第一列的全部位置,只考虑了第一列的第一个位置.
                if(j >= coins[i-1] && dp[j-coins[i-1]] != 0x3f3f3f3f) {
                    dp[j] = Math.min(dp[j],dp[j-coins[i-1]]+1);
                }
            }
        }
        return dp[amount] == 0x3f3f3f3f ? -1 : dp[amount];
    }
}

本篇博客到这里就结束啦, 感谢观看 ❤❤❤

🐎期待与你的下一次相遇😊😊😊

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2296702.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

BGP基础协议详解

BGP基础协议详解 一、BGP在企业中的应用二、BGP概述2.1 BGP的特点2.2 基本配置演示2.3 抓包观察2.4 BGP的特征三、BGP对等体关系四、bgp报文4.1 BGP五种报文类型(重点)4.2 BGP报文格式-报文头格式4.3 Open报文格式4.4 Update报文格式4.5 Notification报文格式4.6 Route-refre…

LeetCode刷题---数组---840

矩阵中的幻方 https://leetcode.cn/problems/magic-squares-in-grid/submissions/598584907/ 题目&#xff1a; 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成…

Visual Studio踩过的坑

统计Unity项目代码行数 编辑-查找和替换-在文件中查找 查找内容输入 b*[^:b#/].*$ 勾选“使用正则表达式” 文件类型留空 也有网友做了指定&#xff0c;供参考 !*\bin\*;!*\obj\*;!*\.*\*!*.meta;!*.prefab;!*.unity 打开Unity的项目 注意&#xff1a;只是看&#xff0…

【深度学习入门实战】基于Keras的手写数字识别实战(附完整可视化分析)

​ 本人主页:机器学习司猫白 ok,话不多说,我们进入正题吧 项目概述 本案例使用经典的MNIST手写数字数据集,通过Keras构建全连接神经网络,实现0-9数字的分类识别。文章将包含: 关键概念图解完整实现代码训练过程可视化模型效果深度分析环境准备 import numpy as np impo…

SkyWalking 10.1.0 实战:从零构建全链路监控,解锁微服务性能优化新境界

文章目录 前言一、集成SkyWalking二、SkyWalking使用三、SkyWalking性能剖析四、SkyWalking 告警推送4.1 配置告警规则4.2 配置告警通知地址4.3 下发告警信息4.4 测试告警4.5 慢SQL查询 总结 前言 在传统监控系统中&#xff0c;我们通过进程监控和日志分析来发现系统问题&…

【通俗易懂说模型】反向传播(附多元分类与Softmax函数)

&#x1f308; 个人主页&#xff1a;十二月的猫-CSDN博客 &#x1f525; 系列专栏&#xff1a; &#x1f3c0;深度学习_十二月的猫的博客-CSDN博客 &#x1f4aa;&#x1f3fb; 十二月的寒冬阻挡不了春天的脚步&#xff0c;十二点的黑夜遮蔽不住黎明的曙光 目录 1. 前言 2. …

128,【1】buuctf [极客大挑战 2019]PHP

进入靶场 提示了备份文件 抓包&#xff0c;扫描 扫描出了两个有反应的 访问index.php没反应&#xff0c;但www.zip成功下载了文件 index.php里得到如下有用信息 <?phpinclude class.php;$select $_GET[select];$resunserialize($select);?> 所以我们要通过GET 方…

系统思考—双环学习

前几天&#xff0c;一个企业高管向我提到&#xff1a;“我们调整了N次方案&#xff0c;市场策略、团队激励、管理制度&#xff0c;能改的全改了&#xff0c;怎么还是不见起色&#xff1f;” 这让我想到典型的单环学习&#xff0c;简单来说就是&#xff1a;发现问题 → 采取行动…

QTreeView和QTableView单元格添加超链接

QTreeView和QTableView单元格添加超链接的方法类似,本文仅以QTreeView为例。 在QTableView仿Excel表头排序和筛选中已经实现了超链接的添加,但是需要借助delegate,这里介绍一种更简单的方式,无需借助delegate。 一.效果 二.实现 QHTreeView.h #ifndef QHTREEVIEW_H #def…

【MySQL篇】行格式详解

MySQL行格式详解 文章目录 MySQL行格式详解&#x1f389; 什么是行格式&#x1f431;‍&#x1f464; 如何查看行格式&#x1f431;‍&#x1f680; InnoDB 行格式有哪些&#xff1f;&#x1f431;‍&#x1f3cd; Compact 行格式&#x1f6a9; 额外信息&#x1f680; 变长字段…

嵌入式知识点总结 操作系统 专题提升(五)-内存

针对于嵌入式软件杂乱的知识点总结起来&#xff0c;提供给读者学习复习对下述内容的强化。 目录 1.在1G内存的计算机能否malloc&#xff08;1.2G&#xff09;&#xff1f;为什么&#xff1f; 2.malloc能申请多大的空间&#xff1f; 3.内存管理有哪几种方式&#xff1f; 4.什…

动手学深度学习---深层神经网络

目录 一、神经网络1.1、模型训练1.2、损失函数1.2.1、分类&#xff1a;hinge loss/合页损失/支持向量机损失1.2.2、分类&#xff1a;交叉熵损失(softmax分类器)1.2.2.1 二分类交叉熵损失1.2.2.2 多分类交叉熵损失 1.2.3、回归&#xff1a;误差平方和&#xff08;SSE&#xff09…

java基础6(黑马)

一、static 1.static修饰成员变量 static&#xff1a;叫静态&#xff0c;可以修饰成员变量、成员方法。 成员变量按照有无static&#xff0c;分两种。 类变量&#xff1a;有static修饰&#xff0c;属于类&#xff0c;在计算机中只有一份&#xff0c;会被类的全部对象共享。…

Transformer 详解:了解 GPT、BERT 和 T5 背后的模型

目录 什么是 Transformer? Transformer如何工作? Transformer 为何有用? 常见问题解答:机器学习中的 Transformer 在技​​术领域,突破通常来自于修复损坏的东西。制造第一架飞机的人研究过鸟类。莱特兄弟观察了秃鹫如何在气流中保持平衡,意识到稳定性比动力更重要。…

【Prometheus】MySQL主从搭建,以及如何通过prometheus监控MySQL运行状态

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…

百问网imx6ullpro调试记录(linux+qt)

调试记录 文章目录 调试记录进展1.开发板相关1.1百问网乌班图密码 1.2 换设备开发环境搭建串口调试网络互通nfs文件系统挂载 1.3网络问题1.4系统启动1.5进程操作 2.QT2.1tslib1.获取源码2.安装依赖文件3.编译 2.2qt移植1.获取qt源码2.配置编译器3.编译 2.3拷贝到开发板1.拷贝2.…

人脸识别与人脸检测技术

人脸识别技术,作为一种基于人的脸部特征信息进行身份识别的生物识别技术,近年来在人工智能和计算机视觉技术的推动下取得了显著进展。它利用摄像机或摄像头采集含有人脸的图像或视频流,自动在图像中检测和跟踪人脸,进而对检测到的人脸进行一系列计算和分别判断。这一技术不…

ansible使用学习

一、查询手册 1、官网 ansible官网地址&#xff1a;https://docs.ansible.com 模块查看路径&#xff1a;https://docs.ansible.com/ansible/latest/collections/ansible/builtin/index.html#plugins-in-ansible-builtin 2、命令 ansible-doc -s command二、相关脚本 1、服务…

基于 PyTorch 的树叶分类任务:从数据准备到模型训练与测试

基于 PyTorch 的树叶分类任务&#xff1a;从数据准备到模型训练与测试 1. 引言 在计算机视觉领域&#xff0c;图像分类是一个经典的任务。本文将详细介绍如何使用 PyTorch 实现一个树叶分类任务。我们将从数据准备开始&#xff0c;逐步构建模型、训练模型&#xff0c;并在测试…

【STM32系列】利用MATLAB配合ARM-DSP库设计IIR数字滤波器(保姆级教程)

ps.源码放在最后面 设计FIR数字滤波器可以看这里&#xff1a;利用MATLAB配合ARM-DSP库设计FIR数字滤波器&#xff08;保姆级教程&#xff09; 设计IIR滤波器 MATLAB配置 设计步骤 首先在命令行窗口输入"filterDesigner"&#xff0c;接着就会跳出以下界面&#xf…