基于 PyTorch 的树叶分类任务:从数据准备到模型训练与测试

news2025/2/12 5:39:37

基于 PyTorch 的树叶分类任务:从数据准备到模型训练与测试


1. 引言

在计算机视觉领域,图像分类是一个经典的任务。本文将详细介绍如何使用 PyTorch 实现一个树叶分类任务。我们将从数据准备开始,逐步构建模型、训练模型,并在测试集上进行预测,最终生成提交文件。
在这里插入图片描述


2. 环境准备

首先,确保已安装以下 Python 库:

pip install torch torchvision pandas d2l
  • torch:PyTorch 核心库。
  • torchvision:提供计算机视觉相关的工具。
  • pandas:用于处理 CSV 文件。
  • d2l:深度学习工具库,提供辅助函数。

3. 数据准备

竞赛链接:https://www.kaggle.com/competitions/classify-leaves/leaderboard?tab=public

3.1 数据集结构

假设数据集位于 classify-leaves 目录下,包含以下文件:

classify-leaves/
├── train.csv
├── test.csv
├── images/
    ├── image1.jpg
    ├── image2.jpg
    ...
  • train.csv:包含训练图像的路径和标签。
  • test.csv:包含测试图像的路径。

3.2 数据加载与预处理

import os
import pandas as pd
import random

imgpath = "classify-leaves"
trainlist = pd.read_csv(f"{imgpath}/train.csv")
num2name = list(trainlist["label"].value_counts().index)
random.shuffle(num2name)
name2num = {}
for i in range(len(num2name)):
    name2num[num2name[i]] = i
  • num2name:获取所有类别标签,并按类别数量排序。
  • name2num:将类别名称映射到数字编号。

4. 自定义数据集类

为了加载数据,我们需要定义一个自定义数据集类 Leaf_data

from torch.utils.data import Dataset
from d2l import torch as d2l

class Leaf_data(Dataset):
    def __init__(self, path, train, transform=lambda x: x):
        super().__init__()
        self.path = path
        self.transform = transform
        self.train = train
        if train:
            self.datalist = pd.read_csv(f"{path}/train.csv")
        else:
            self.datalist = pd.read_csv(f"{path}/test.csv")

    def __getitem__(self, index):
        res = ()
        tmplist = self.datalist.iloc[index, :]
        for i in tmplist.index:
            if i == "image":
                res += (self.transform(d2l.Image.open(f"{self.path}/{tmplist[i]}")),)
            else:
                res += (name2num[tmplist[i]],)
        if len(res) < 2:
            res += (tmplist[i],)
        return res

    def __len__(self):
        return len(self.datalist)
  • __getitem__:根据索引返回一个样本,包括图像和标签。
  • __len__:返回数据集的长度。

5. 模型定义与初始化

我们使用预训练的 ResNet34 模型,并修改最后一层以适应分类任务:

import torch
import torchvision
from torch import nn

def init_weight(m):
    if type(m) in [nn.Linear, nn.Conv2d]:
        nn.init.xavier_normal_(m.weight)

net = torchvision.models.resnet34(weights=torchvision.models.ResNet34_Weights.IMAGENET1K_V1)
net.fc = nn.Linear(in_features=512, out_features=len(name2num), bias=True)
net.fc.apply(init_weight)
net.to(try_gpu())
  • init_weight:使用 Xavier 初始化方法初始化全连接层的权重。
  • net:加载预训练的 ResNet34 模型,并修改最后一层全连接层。

6. 训练过程

6.1 优化器与损失函数

lr = 1e-4
parames = [parame for name, parame in net.named_parameters() if name not in ["fc.weight", "fc.bias"]]
trainer = torch.optim.Adam([{"params": parames}, {"params": net.fc.parameters(), "lr": lr * 10}], lr=lr)
LR_con = torch.optim.lr_scheduler.CosineAnnealingLR(trainer, 1, 0)
loss = nn.CrossEntropyLoss(reduction='none')
  • trainer:使用 Adam 优化器,对全连接层使用更高的学习率。
  • LR_con:使用余弦退火学习率调度器。
  • loss:使用交叉熵损失函数。

6.2 训练函数


def train_batch(features, labels, net, loss, trainer, device):
    # 将数据移动到指定设备(如 GPU)
    features, labels = features.to(device), labels.to(device)
    
    # 前向传播
    outputs = net(features)
    l = loss(outputs, labels).mean()  # 计算损失
    
    # 反向传播和优化
    trainer.zero_grad()  # 梯度清零
    l.backward()         # 反向传播
    trainer.step()      # 更新参数
    
    # 计算准确率
    acc = (outputs.argmax(dim=1) == labels).float().mean()
    
    return l.item(), acc.item()

def train(train_data, test_data, net, loss, trainer, num_epochs, device=try_gpu()):
    best_acc = 0
    timer = d2l.Timer()
    plot = d2l.Animator(xlabel="epoch", xlim=[1, num_epochs], legend=['train loss', 'train acc', 'test loss'], ylim=[0, 1])
    for epoch in range(num_epochs):
        metric = d2l.Accumulator(4)
        for i, (features, labels) in enumerate(train_data):
            timer.start()
            l, acc = train_batch(features, labels, net, loss, trainer, device)
            metric.add(l, acc, labels.shape[0], labels.numel())
            timer.stop()
        test_acc = d2l.evaluate_accuracy_gpu(net, test_data, device=device)
        if test_acc > best_acc:
            save_model(net)
            best_acc = test_acc
        plot.add(epoch + 1, (metric[0] / metric[2], metric[1] / metric[3], test_acc))
        print(f'loss {metric[0] / metric[2]:.3f}, train acc {metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}')
    print(f'loss {metric[0] / metric[2]:.3f}, train acc {metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on {str(device)}')
    print(f"best acc {best_acc}")
    return metric[0] / metric[2], metric[1] / metric[3], test_acc
  • train:训练模型,记录损失和准确率,并在验证集上评估模型。

7. 测试与结果保存

在测试集上进行预测,并保存结果到 CSV 文件:

net.load_state_dict(torch.load(model_path))
augs = torchvision.transforms.Compose([
    torchvision.transforms.Resize(224),
    torchvision.transforms.ToTensor(), norm
])
test_data = Leaf_data(imgpath, False, augs)
test_dataloader = Data.DataLoader(test_data, batch_size=64, shuffle=False)
res = pd.DataFrame(columns=["image", "label"], index=range(len(test_data)))
net = net.cpu()
count = 0
for X, y in test_dataloader:
    preds = net(X).detach().argmax(dim=-1).numpy()
    preds = pd.DataFrame(y, index=map(lambda x: num2name[x], preds))
    preds.loc[:, 1] = preds.index
    preds.index = range(count, count + len(y))
    res.iloc[preds.index] = preds
    count += len(y)
    print(f"loaded {count}/{len(test_data)} datas")
res.to_csv('./submission.csv', index=False)
  • test_dataloader:加载测试数据。
  • res:保存预测结果到 CSV 文件。

8. 总结

本文详细介绍了如何使用 PyTorch 实现一个树叶分类任务,包括数据准备、模型定义、训练、验证和测试。通过本文,您可以掌握以下技能:

  1. 自定义数据集类的实现。
  2. 使用预训练模型进行迁移学习。
  3. 训练模型并保存最佳模型。
  4. 在测试集上进行预测并生成提交文件。

希望本文对您有所帮助!如果有任何问题,欢迎在评论区留言讨论。😊

完整代码

import os
import torch
from torch.utils import data as Data
import torchvision
from torch import nn
from d2l import torch as d2l
import pandas as pd
import random

# 数据准备
imgpath = "classify-leaves"
trainlist = pd.read_csv(f"{imgpath}/train.csv")
num2name = list(trainlist["label"].value_counts().index)
random.shuffle(num2name)
name2num = {}
for i in range(len(num2name)):
    name2num[num2name[i]] = i

# GPU 检查
def try_gpu():
    if torch.cuda.device_count() > 0:
        return torch.device('cuda')
    return torch.device('cpu')

# 模型保存路径
model_dir = './models'
if not os.path.exists(model_dir):
    os.makedirs(model_dir)
model_path = os.path.join(model_dir, 'pre_res_model.ckpt')

def save_model(net):
    torch.save(net.state_dict(), model_path)

# 自定义数据集类
class Leaf_data(Data.Dataset):
    def __init__(self, path, train, transform=lambda x: x):
        super().__init__()
        self.path = path
        self.transform = transform
        self.train = train
        if train:
            self.datalist = pd.read_csv(f"{path}/train.csv")
        else:
            self.datalist = pd.read_csv(f"{path}/test.csv")

    def __getitem__(self, index):
        res = ()
        tmplist = self.datalist.iloc[index, :]
        for i in tmplist.index:
            if i == "image":
                res += (self.transform(d2l.Image.open(f"{self.path}/{tmplist[i]}")),)
            else:
                res += (name2num[tmplist[i]],)
        if len(res) < 2:
            res += (tmplist[i],)
        return res

    def __len__(self):
        return len(self.datalist)

def train_batch(features, labels, net, loss, trainer, device):
    # 将数据移动到指定设备(如 GPU)
    features, labels = features.to(device), labels.to(device)
    
    # 前向传播
    outputs = net(features)
    l = loss(outputs, labels).mean()  # 计算损失
    
    # 反向传播和优化
    trainer.zero_grad()  # 梯度清零
    l.backward()         # 反向传播
    trainer.step()      # 更新参数
    
    # 计算准确率
    acc = (outputs.argmax(dim=1) == labels).float().mean()
    
    return l.item(), acc.item()


# 训练函数
def train(train_data, test_data, net, loss, trainer, num_epochs, device=try_gpu()):
    best_acc = 0
    timer = d2l.Timer()
    plot = d2l.Animator(xlabel="epoch", xlim=[1, num_epochs], legend=['train loss', 'train acc', 'test loss'], ylim=[0, 1])
    for epoch in range(num_epochs):
        metric = d2l.Accumulator(4)
        for i, (features, labels) in enumerate(train_data):
            timer.start()
            l, acc = train_batch(features, labels, net, loss, trainer, device)
            metric.add(l, acc, labels.shape[0], labels.numel())
            timer.stop()
        test_acc = d2l.evaluate_accuracy_gpu(net, test_data, device=device)
        if test_acc > best_acc:
            save_model(net)
            best_acc = test_acc
        plot.add(epoch + 1, (metric[0] / metric[2], metric[1] / metric[3], test_acc))
        print(f'loss {metric[0] / metric[2]:.3f}, train acc {metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}')
    print(f'loss {metric[0] / metric[2]:.3f}, train acc {metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on {str(device)}')
    print(f"best acc {best_acc}")
    return metric[0] / metric[2], metric[1] / metric[3], test_acc

# 模型初始化
def init_weight(m):
    if type(m) in [nn.Linear, nn.Conv2d]:
        nn.init.xavier_normal_(m.weight)

net = torchvision.models.resnet34(weights=torchvision.models.ResNet34_Weights.IMAGENET1K_V1)
net.fc = nn.Linear(in_features=512, out_features=len(name2num), bias=True)
net.fc.apply(init_weight)
net.to(try_gpu())

# 优化器和损失函数
lr = 1e-4
parames = [parame for name, parame in net.named_parameters() if name not in ["fc.weight", "fc.bias"]]
trainer = torch.optim.Adam([{"params": parames}, {"params": net.fc.parameters(), "lr": lr * 10}], lr=lr)
LR_con = torch.optim.lr_scheduler.CosineAnnealingLR(trainer, 1, 0)
loss = nn.CrossEntropyLoss(reduction='none')

# 数据增强和数据加载
batch = 64
num_epochs = 10
norm = torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
augs = torchvision.transforms.Compose([
    torchvision.transforms.Resize(224),
    torchvision.transforms.RandomHorizontalFlip(p=0.5),
    torchvision.transforms.ToTensor(), norm
])
train_data, valid_data = Data.random_split(
    dataset=Leaf_data(imgpath, True, augs),
    lengths=[0.8, 0.2]
)
train_dataloder = Data.DataLoader(train_data, batch, True)
valid_dataloder = Data.DataLoader(valid_data, batch, True)

# 训练模型
train(train_dataloder, valid_dataloder, net, loss, trainer, num_epochs)

# 测试模型
net.load_state_dict(torch.load(model_path))
augs = torchvision.transforms.Compose([
    torchvision.transforms.Resize(224),
    torchvision.transforms.ToTensor(), norm
])
test_data = Leaf_data(imgpath, False, augs)
test_dataloader = Data.DataLoader(test_data, batch_size=64, shuffle=False)
res = pd.DataFrame(columns=["image", "label"], index=range(len(test_data)))
net = net.cpu()
count = 0
for X, y in test_dataloader:
    preds = net(X).detach().argmax(dim=-1).numpy()
    preds = pd.DataFrame(y, index=map(lambda x: num2name[x], preds))
    preds.loc[:, 1] = preds.index
    preds.index = range(count, count + len(y))
    res.iloc[preds.index] = preds
    count += len(y)
    print(f"loaded {count}/{len(test_data)} datas")
res.to_csv('./submission.csv', index=False)

参考链接:

  • PyTorch 官方文档
  • torchvision 官方文档
  • d2l 深度学习工具库

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2296673.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【STM32系列】利用MATLAB配合ARM-DSP库设计IIR数字滤波器(保姆级教程)

ps.源码放在最后面 设计FIR数字滤波器可以看这里&#xff1a;利用MATLAB配合ARM-DSP库设计FIR数字滤波器&#xff08;保姆级教程&#xff09; 设计IIR滤波器 MATLAB配置 设计步骤 首先在命令行窗口输入"filterDesigner"&#xff0c;接着就会跳出以下界面&#xf…

如何在本地部署deepseek?

1、打开ollama官网&#xff0c;点download&#xff08;下载需要翻墙 https://ollama.com/ 2、双击下载好的OllamaSetup.exe&#xff0c;一直点下一步即可。 3、winR 输入cmd&#xff0c;打开命令提示符&#xff0c;输入ollama。有以下提示即安装完成。 4、可以根据 nvidia-…

AJAX项目——数据管理平台

黑马程序员视频地址&#xff1a; 黑马程序员——数据管理平台 前言 功能&#xff1a; 1.登录和权限判断 2.查看文章内容列表&#xff08;筛选&#xff0c;分页&#xff09; 3.编辑文章&#xff08;数据回显&#xff09; 4.删除文章 5.发布文章&#xff08;图片上传&#xff0…

MarsCode AI插件在IntelliJ IDEA中使用

文章目录 前言一、MarsCode是什么&#xff1f;二、下载三、使用1、登录2、操作界面3、生成代码4、解释代码5、注释代码6、生成单测7、智能修复8、代码补全 总结 前言 随着 AI 技术浪潮席卷而来&#xff0c;各类 AI 工具呈爆发式涌现&#xff0c;深度融入我们的日常与职场&…

如何将网站提交百度收录完整SEO教程

百度收录是中文网站获取流量的重要渠道。本文以我的网站&#xff0c;www.mnxz.fun&#xff08;当然现在没啥流量&#xff09; 为例&#xff0c;详细讲解从提交收录到自动化维护的全流程。 一、百度收录提交方法 1. 验证网站所有权 1、登录百度搜索资源平台 2、选择「用户中心…

C# OpenCV机器视觉:SoftNMS非极大值抑制

嘿&#xff0c;你知道吗&#xff1f;阿强最近可忙啦&#xff01;他正在处理一个超级棘手的问题呢&#xff0c;就好像在一个混乱的战场里&#xff0c;到处都是乱糟糟的候选框&#xff0c;这些候选框就像一群调皮的小精灵&#xff0c;有的重叠在一起&#xff0c;让阿强头疼不已。…

生信云服务器:让生物信息学分析更高效、更简单【附带西柚云优惠码】

随着生物信息学的快速发展&#xff0c;基因组测序、单细胞分析等复杂任务逐渐成为研究者们的日常工作。然而&#xff0c;个人电脑在处理这些任务时往往面临性能瓶颈&#xff0c;如内存不足、运算速度慢等问题&#xff0c;导致分析任务频繁失败或崩溃。为了解决这一难题&#xf…

【清晰教程】通过Docker为本地DeepSeek-r1部署WebUI界面

【清晰教程】本地部署DeepSeek-r1模型-CSDN博客 目录 安装Docker 配置&检查 Open WebUI 部署Open WebUI 安装Docker 完成本地DeepSeek-r1的部署后【清晰教程】本地部署DeepSeek-r1模型-CSDN博客&#xff0c;通过Docker为本地DeepSeek-r1部署WebUI界面。 访问Docker官…

Flink-序列化

一、概述 几乎每个Flink作业都必须在其运算符之间交换数据&#xff0c;由于这些记录不仅可以发送到同一JVM中的另一个实例&#xff0c;还可以发送到单独的进程&#xff0c;因此需要先将记录序列化为字节。类似地&#xff0c;Flink的堆外状态后端基于本地嵌入式RocksDB实例&…

快速部署 DeepSeek R1 模型

1. DeepSeek R1 模型的介绍 DeepSeek R1 模型是专为自然语言处理&#xff08;NLP&#xff09;和其他复杂任务设计的先进大规模深度学习模型 &#xff0c;其高效的架构设计是一大亮点&#xff0c;能够更高效地提取特征&#xff0c;减少冗余计算。这意味着在处理海量数据时&…

数据库系统概念第六版记录 四

1.sql组成 SQL 是最有影响力的商用市场化的关系查询语言。SQL 语言包括几个部分: 数据定义语言(DDL) &#xff0c;它提供了定义关系模式、删除关系以及修改关系模式的命令。 数据操纵语言(DML) &#xff0c;它包括查询语言&#xff0c;以及往数据库中插入元组、从数据库中删…

DeepSeek在FPGA/IC开发中的创新应用与未来潜力

随着人工智能技术的飞速发展&#xff0c;以DeepSeek为代表的大语言模型&#xff08;LLM&#xff09;正在逐步渗透到传统硬件开发领域。在FPGA&#xff08;现场可编程门阵列&#xff09;和IC&#xff08;集成电路&#xff09;开发这一技术密集型行业中&#xff0c;DeepSeek凭借其…

DeepSeek-V3 的核心技术创新

DeepSeek-V3 的核心技术创新 flyfish DeepSeek-V3 的核心技术创新主要体现在其架构设计和训练目标上&#xff0c;通过 多头潜在注意力&#xff08;MLA&#xff09;、DeepSeekMoE 架构、无辅助损失的负载均衡策略 和 多 Token 预测训练目标&#xff08;MTP&#xff09; 1. 多…

【Elasticsearch】监控与管理:集群监控指标

&#x1f9d1; 博主简介&#xff1a;CSDN博客专家&#xff0c;历代文学网&#xff08;PC端可以访问&#xff1a;https://literature.sinhy.com/#/?__c1000&#xff0c;移动端可微信小程序搜索“历代文学”&#xff09;总架构师&#xff0c;15年工作经验&#xff0c;精通Java编…

鸿蒙接入支付宝SDK后模拟器无法运行,报错error: install parse native so failed.

鸿蒙项目接入支付宝后&#xff0c;运行提示error: install parse native so failed. 该问题可能由于设备支持的 Abi 类型与 C 工程中的不匹配导致. 官网error: install parse native so failed.错误解决办法 根据官网提示在模块build-profile.json5中添加“x86_64”依然报错 问…

react redux用法学习

参考资料&#xff1a; https://www.bilibili.com/video/BV1ZB4y1Z7o8 https://cn.redux.js.org/tutorials/essentials/part-5-async-logic AI工具&#xff1a;deepseek&#xff0c;通义灵码 第一天 安装相关依赖&#xff1a; 使用redux的中间件&#xff1a; npm i react-redu…

【Matlab优化算法-第13期】基于多目标优化算法的水库流量调度

一、前言 水库流量优化是水资源管理中的一个重要环节&#xff0c;通过合理调度水库流量&#xff0c;可以有效平衡防洪、发电和水资源利用等多方面的需求。本文将介绍一个水库流量优化模型&#xff0c;包括其约束条件、目标函数以及应用场景。 二、模型概述 水库流量优化模型…

Redis 集群(Cluster)和基础的操作 部署实操篇

三主三从 集群概念 Redis 的哨兵模式&#xff0c;提高了系统的可用性&#xff0c;但是正在用来存储数据的还是 master 和 slave 节点&#xff0c;所有的数据都需要存储在单个 master 和 salve 节点中。 如果数据量很大&#xff0c;接近超出了 master / slave 所在机器的物理内…

[2025年最新]2024.3版本idea无法安装插件问题解决

背景 随着大模型的持续发展&#xff0c;特别年前年后deepseek的优异表现&#xff0c;编程过程中&#xff0c;需要解决ai来辅助编程&#xff0c;因此需要安装一些大模型插件 问题描述 在线安装插件的时候会遇到以下问题&#xff1a; 1.数据一直在加载&#xff0c;加载的很满 2.点…

elasticsearch安装插件analysis-ik分词器(深度研究docker内elasticsearch安装插件的位置)

最近在学习使用elasticsearch&#xff0c;但是在安装插件ik的时候遇到许多问题。 所以在这里开始对elasticsearch做一个深度的研究。 首先提供如下链接&#xff1a; https://github.com/infinilabs/analysis-ik/releases 我们下载elasticsearch-7-17-2的Linux x86_64版本 …