集合卡尔曼滤波(EnsembleKalmanFilter)的MATLAB例程(三维、二维)

news2024/11/24 7:40:19

在这里插入图片描述

M A T L A B MATLAB MATLAB代码实现了一个三维动态系统的集合卡尔曼滤波(Ensemble Kalman Filter, EnKF)示例。代码的主要目的是通过模拟真实状态和测量值,使用 EnKF 方法对动态系统状态进行估计。

文章目录

  • 参数设置
  • 初始化真实状态
  • 定义状态转移和测量矩阵
  • 生成真实状态和测量值
  • 初始化集合卡尔曼滤波
  • 执行集合卡尔曼滤波
  • 绘制结果
  • 误差绘图
  • 总结
  • 部分代码
  • 运行结果

参数设置

  • 状态维度 (n):设置为6,表示系统有6个状态变量(如位置和速度)。
  • 测量维度 (m):设置为3,表示系统有3个测量变量。
  • 时间步数 (N):设置为100,表示模拟会进行100个时间步。
  • 集合成员数量 (num_ensemble):设置为10,表示使用10个样本进行状态估计。
  • 过程噪声和测量噪声的协方差矩阵
    • process_noise_cov 设置为较小的值,表示过程噪声较低。
    • measurement_noise_cov 设置为1,表示测量噪声较高。

初始化真实状态

  • 创建一个 nN 列的零矩阵 true_state 来存储真实状态。
  • 设置初始真实状态为 [1; 0; 2; 1; 1; 0.1],代表系统的初始位置和速度。

定义状态转移和测量矩阵

  • 状态转移矩阵 (A):定义如何从当前状态转移到下一个状态。这里使用了时间间隔 T 来更新位置和速度。
  • 测量矩阵 (H):定义如何从状态生成测量值,使用线性组合来映射状态到测量空间。

生成真实状态和测量值

  • 在一个循环中,从第二个时间步开始:
    • 使用状态转移矩阵 A 和过程噪声生成下一个真实状态。
    • 根据真实状态和测量噪声生成测量值,存储在 measurements 矩阵中。

初始化集合卡尔曼滤波

  • 生成初始集合 ensemble,所有成员都基于初始真实状态,加上随机扰动。
  • 创建一个零矩阵 estimates 用于存储每个时间步的状态估计。

执行集合卡尔曼滤波

  • 在循环中进行预测和更新步骤:
    • 预测步骤:根据状态转移矩阵更新集合成员,加入过程噪声。
    • 计算集合的均值和协方差:用于状态更新。
    • 更新步骤
      • 计算创新(观测值与预测值的差)。
      • 计算创新协方差。
      • 计算卡尔曼增益。
      • 更新集合成员,以反映新测量信息。
    • 存储当前时间步的状态估计。

绘制结果

  • 使用三维绘图(plot3)绘制真实状态、估计状态和测量值的轨迹。
  • 创建多个子图,显示不同状态变量(如 X、Y、Z 位移)的真实状态、估计状态和测量值的变化。

误差绘图

  • 新建图形窗口,绘制估计误差和观测误差。
  • 使用 fprintf 输出 X、Y、Z 轴的误差统计信息,包括最大误差和平均绝对误差。

总结

整段代码的主要目标是通过集合卡尔曼滤波算法对一个三维动态系统进行状态估计。它通过模拟真实状态和测量值的过程,展示了如何使用 EnKF 来处理动态系统,并通过可视化结果和误差分析来评估估计的准确性。

部分代码

% 集合卡尔曼滤波示例 三维
% 2024-11-12/Ver1
clear; clc; close all; % 清除工作空间,清空命令窗口,关闭所有图形窗口
rng(0); % 设置随机数生成器的种子,以确保结果可重复

% 参数设置
n = 6; % 状态维度(4个状态变量)
m = 3; % 测量维度(2个测量变量)
N = 100; % 时间步数(总共进行100个时间步的模拟)
num_ensemble = 10; % 集合成员数量(使用10个样本进行估计)
process_noise_cov = 1e-5 * eye(n); % 过程噪声协方差矩阵(小值,表示低噪声)
measurement_noise_cov = 1 * eye(m); % 测量噪声协方差矩阵(较大值,表示较高噪声)

% 初始化真实状态
true_state = zeros(n, N); % 创建一个n行N列的零矩阵,用于存储真实状态
true_state(:, 1) = [1; 0; 2; 1; 1 ; 0.1]; % 设置初始真实状态(X位移、X速度、Y位移、Y速度)

T = 1; %时间间隔
% 状态转移矩阵
A = [1 T 0 0 0 0;  % 状态转移矩阵,定义如何从一个状态转移到下一个状态
     0 1 0 0 0 0 ; 
     0 0 1 T 0 0; 
     0 0 0 1 0 0;
     0 0 0 0 1 T;
     0 0 0 0 0 1];

% 测量矩阵
H = [1 0 0 0 0 0; % 测量矩阵,定义如何从状态生成测量值
     0 0 1 0 0 0;
     0 0 0 0 1 0];



下载链接:https://gf.bilibili.com/item/detail/1106653012

运行结果

三维轨迹图:
在这里插入图片描述

  • 各轴状态量
    在这里插入图片描述

  • 误差曲线

在这里插入图片描述

  • 误差统计特性输出

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2239349.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【动手学电机驱动】STM32-FOC(5)基于 IHM03 的无感 FOC 控制

STM32-FOC(1)STM32 电机控制的软件开发环境 STM32-FOC(2)STM32 导入和创建项目 STM32-FOC(3)STM32 三路互补 PWM 输出 STM32-FOC(4)IHM03 电机控制套件介绍 STM32-FOC(5&…

光老化测试的三种试验:紫外老化、氙灯老化、碳弧灯老化

光老化是指材料在阳光照射下,由于紫外线、热和氧气的共同作用而发生的物理和化学变化。这种现象对纺织材料、塑料材料、涂料材料和橡胶材料的应用有显著影响。这些材料户外家具、汽车内饰和户外供水排水管道、建筑外墙涂料、汽车漆面、船舶涂料、汽车轮胎、密封件、…

VMWare安装包及安装过程

虚拟机基本使用 检查自己是否开启虚拟化 如果虚拟化没有开启,需要自行开启:百度加上自己电脑的品牌型号,进入BIOS界面开启 什么是虚拟机 所谓的虚拟机,就是在当前计算机系统中,又开启了一个虚拟系统 这个虚拟系统&…

消费的外部性

大学宿舍,遇到在你睡觉的时候开外放不戴耳机的室友,但中午12点,室友却在那拉上窗帘睡觉。能带饭吗?能代签到吗?能倒个垃圾吗?能带个外卖吗?自己永远麻烦别人,你要让他帮个忙又这推那…

易趋亮相2024 PMI项目管理大会

11月9日-10日,2024 PMI项目管理大会在广州圆满举办,项目管理行业优秀代表企业——易趋(隶属深圳市蓝云软件有限公司),携最新产品和解决方案亮相本次展会。 (主论坛现场) 本届大会以“‘项’有所成 行以致远…

边缘计算与推理算力:智能时代的加速引擎

在数据量爆炸性增长的今天,边缘计算与推理算力正成为推动智能应用的关键力量。智能家居、自动驾驶、工业4.0等领域正在逐步从传统的云端计算转向边缘计算,而推理算力的加入,为边缘计算提供了更强的数据处理能力和实时决策能力。本文将探讨边缘…

基于matlab的CNN食物识别分类系统,matlab深度学习分类,训练+数据集+界面

文章目录 前言🎓一、数据集准备🎓二、模型训练🍀🍀1.初始化🍀🍀2.加载数据集🍀🍀3.划分数据集,并保存到新的文件夹🍀🍀4.可视化数据集&#x1f34…

马斯克万卡集群AI数据中心引发的科技涟漪:智算数据中心挑战与机遇的全景洞察

一、AI 爆发重塑数据中心格局 随着AI 技术的迅猛发展,尤其是大模型的崛起,其对数据中心产生了极为深远的影响。大模型以其数以亿计甚至更多的参数和对海量数据的处理需求,成为了 AI 发展的核心驱动力之一,同时也为数据中心带来了…

移远通信亮相骁龙AI PC生态科技日,以领先的5G及Wi-Fi产品革新PC用户体验

PC作为人们学习、办公、娱乐的重要工具,已经深度融入我们的工作和生活。随着物联网技术的快速发展,以及人们对PC性能要求的逐步提高,AI PC成为了行业发展的重要趋势。 11月7-8日,骁龙AI PC生态科技日在深圳举办。作为高通骁龙的重…

Unity资源打包Addressable资源保存在项目中

怎么打包先看“Unity资源打包Addressable AA包” 其中遗留一个问题,下载下来的资源被保存在C盘中了,可不可以保存在项目中呢?可以。 新建了一个项目,路径与“Unity资源打包Addressable AA包”都不相同了 1.创建资源缓存路径 在…

postman变量和脚本功能介绍

1、基本概念——global、collection、environment 在postman中,为了更好的管理各类变量、测试环境以及脚本等,创建了一些概念,包括:globals、collection、environment。其实在postman中,最上层还有一个Workspaces的概…

为什么汽车电源正在用 48V 取代 12V

欧姆定律也有利于 48 伏电源 假设您需要为汽车的起动电机供电。可能存在以下静态和动态特征: 电源电压:12V 额定电流:40A 额定功率:480W 标称平均阻抗:0.3Ω 浪涌电流:150A 浪涌功率:1,8…

【webrtc】 RTP 中的 MID(Media Stream Identifier)

RTP 中的 MID(Media Stream Identifier) RID及其与MID的区别 cname与mid的对比【webrtc】CNAME 是rtprtcp中的Canonical Name(规范化名称) 同样都是RTP头部扩展: 基于mediasoup的最新的代码,学习,发现mid在创建RtpSendStream时是必须传递的参数: 例如 D:\XTRANS\soup\…

酷炫的鼠标移入效果(附源码!!)

预览效果 源码(htmljs部分) <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title>…

PHP和Python脚本的性能监测方案

目录 1. 说明 2. PHP脚本性能监测方案 2.1 安装xdebug 2.2 配置xdebug.ini 2.3 命令行与VS Code中使用 - 命令行 - VS Code 2.4 QCacheGrind 浏览 3. Python脚本性能监测方案 3.1 命令行 4. 工具 5.参考 1. 说明 获取我们的脚本程序运行时的指标&#xff0c;对分析…

【人工智能】10分钟解读-深入浅出大语言模型(LLM)——从ChatGPT到未来AI的演进

文章目录 一、前言二、GPT模型的发展历程2.1 自然语言处理的局限2.2 机器学习的崛起2.3 深度学习的兴起2.3.1 神经网络的训练2.3.2 神经网络面临的挑战 2.4 Transformer的革命性突破2.4.1 Transformer的核心组成2.4.2 Transformer的优势 2.5 GPT模型的诞生与发展2.5.1 GPT的核心…

hive中windows子句的使用

概述 1&#xff0c;windows子句是对窗口的结果做更细粒度的划分 2、windows子句中有两种方式 rows &#xff1a;按照相邻的几行进行开窗 range&#xff1a;按照某个值的范围进行开窗 使用方式 (rows | range) between (UNBOUNDED | [num]) PRECEDING AND ([num] PRECEDING…

GPT4的下一代Orion已经降速了?

嘿&#xff0c;大家好&#xff0c;我是小索奇&#xff01;说起AI&#xff0c;相信不少人都和我一样&#xff0c;总感觉这玩意儿发展得就像装了火箭&#xff0c;快得让人眼花缭乱。咱们从GPT-3到GPT-4&#xff0c;一路哇哦着过来&#xff0c;天天惊叹它越来越聪明&#xff0c;越…

【LinuxC编程】06 - 守护进程,线程

进程组和会话 概念和特性 进程组&#xff0c;也称之为作业。BSD于1980年前后向Unix中增加的一个新特性。代表一个或多个进程的集合。每个进程都属于一个进程组。在waitpid函数和kill函数的参数中都曾使用到。操作系统设计的进程组的概念&#xff0c;是为了简化对多个进程的管…

探索 Python 图像处理的瑞士军刀:Pillow 库

文章目录 探索 Python 图像处理的瑞士军刀&#xff1a;Pillow 库第一部分&#xff1a;背景介绍第二部分&#xff1a;Pillow库是什么&#xff1f;第三部分&#xff1a;如何安装这个库&#xff1f;第四部分&#xff1a;简单的库函数使用方法第五部分&#xff1a;结合场景使用库第…