边缘计算与推理算力:智能时代的加速引擎

news2024/11/24 9:11:06

d3325a0478a87a179de14dea1973175c.jpeg

在数据量爆炸性增长的今天,边缘计算与推理算力正成为推动智能应用的关键力量。智能家居、自动驾驶、工业4.0等领域正在逐步从传统的云端计算转向边缘计算,而推理算力的加入,为边缘计算提供了更强的数据处理能力和实时决策能力。本文将探讨边缘计算与推理算力的关系、应用价值及其未来方向。


outside_default.png

边缘计算:从云端到边缘的转变

outside_default.png

边缘计算(Edge Computing)是一种将数据处理从云端转移到靠近数据源的设备上的方法。这种转变的动力源于设备对实时性、隐私保护和低成本的需求。随着物联网设备的大量普及,智能应用中的数据需求逐年增长,传统的云端处理在时延和隐私保护上显得力不从心。因此,边缘计算应运而生。

0cdcb88cc15f8a316fbc2a2cca430568.jpeg

在边缘计算的架构中,推理算力(Inference Power)是实现智能化的核心能力。推理算力指的是设备在本地执行人工智能(AI)模型的计算能力,特别是在推理过程中的表现。通过推理算力,边缘计算可以在本地对数据进行分析和决策,无需依赖于云端模型的支持。比如,配备AI芯片的智能摄像头可以在边缘完成对人脸、行为的识别,不必将图像数据上传云端。通过将AI模型的推理过程下沉到本地,边缘计算可以实现更快速、低成本的数据处理。


outside_default.png

应用场景:边缘推理的现实价值

outside_default.png

随着边缘计算和AI技术的不断发展,边缘推理在多个应用场景中展现出了强大的潜力,逐渐渗透到自动驾驶、工业自动化、智能零售等关键领域。相比传统的云计算,边缘推理通过在本地设备上处理数据,能够更快地响应、保护隐私、降低数据传输成本,正在改变各行业的运营方式和用户体验。

5838cea6c96e1e0c283bb956113f50e8.jpeg

自动驾驶与交通系统
自动驾驶车辆需要对周围环境进行实时感知与分析。推理算力在本地实现障碍物检测、路径规划等智能功能,提升了车辆的反应速度和行车安全性。同样,在智能交通系统中,边缘推理可以帮助信号灯、摄像头等设备做出本地化决策,缓解交通拥堵。

工业自动化

边缘推理在智能制造中具备了实时监控、缺陷检测和设备状态监测等功能,设备可以在不依赖云端的情况下实时检测产品质量,减少因故障带来的停工风险,提高生产效率。

智能零售体验
零售领域的边缘推理可对顾客行为进行实时分析,识别顾客兴趣商品、停留时长等,为零售商提供个性化推荐、动态调整库存等服务。这类应用正在重塑消费者的购物体验。


outside_default.png

边缘推理的技术挑战

outside_default.png

尽管边缘推理带来了诸多优势,但在实际应用中,技术实现依然面临着诸多挑战。这些问题直接关系到边缘推理的应用效果与效率,因此解决这些挑战成为边缘推理技术进步的关键。

00582c068566b27df35c0a9d9eb669e1.jpeg

模型压缩与高效推理

深度学习模型因其复杂的结构和庞大的参数量而具备强大的数据分析能力,但这也带来了计算量大、资源需求高的难题。边缘设备的计算能力通常较为有限,尤其是内存和处理速度,难以支持原始的深度学习模型。这时,模型压缩技术便成为了边缘推理的关键手段。模型剪枝、量化、知识蒸馏等技术可在保证模型精度的前提下,减少模型体积和计算需求,从而适配边缘设备的计算能力。

例如,剪枝技术通过删除模型中的冗余连接和参数来减少计算量;量化技术则可以将模型参数的浮点数精度降低到整数精度,显著减小模型所需的存储和计算资源。知识蒸馏则通过让小模型学习大模型的知识,实现性能和效率的平衡。这些模型压缩技术能够帮助深度学习模型适应边缘设备的资源限制,使得高效推理成为可能。然而,如何在模型压缩的过程中尽可能少地牺牲精度,依旧是一个技术难点,尤其是在实时性要求较高的应用场景中。

低功耗需求

边缘设备在功耗方面受到较大限制,特别是在偏远地区、无人驾驶车辆或移动设备等应用场景中,设备供电条件可能并不稳定。这就要求边缘推理过程中的每一步都需要尽可能节省电力,而低功耗设计则成为AI芯片优化的重点。当前,许多AI芯片厂商(如NVIDIA、Arm、Intel等)正通过硬件加速器、动态电源管理、智能休眠等技术,致力于开发低功耗、高效能的边缘设备。

例如,部分AI芯片通过异构设计整合了CPU、GPU、NPU等多个模块,可以针对不同计算任务自动调配资源,确保仅使用必要的算力完成推理任务,从而降低功耗。这类技术发展为边缘推理带来了更多的应用可能性,推动了高效、节能型边缘设备的普及。然而,在保证低功耗的同时满足边缘推理任务的实时性和准确性,依旧是低功耗设计中面临的难题之一。

异构计算架构的优化

边缘推理任务多样化,涉及简单规则检测到复杂深度学习推理。为了更高效地处理这些任务,许多边缘设备集成了CPU、GPU、NPU(神经网络处理单元)等异构架构。CPU适合通用计算,GPU擅长并行计算,而NPU专注于深度学习推理。关键在于合理分配任务到最合适的硬件单元,以实现资源的高效利用。

异构计算的优化难点主要在资源调度。边缘设备资源有限,不同设备的硬件组合也不尽相同,因此需设计通用的调度算法,智能分配任务以适应多样化架构。同时,不同硬件单元之间的通信开销也需控制,以降低延迟和能耗。

数据隐私与设备安全

边缘设备因数据本地处理而具备隐私优势,但其处于开放环境中,容易受到物理攻击和网络入侵,可能导致数据泄露或模型篡改。例如,公共场所的智能摄像头和交通信号设备若遭到攻击,可能带来严重安全隐患。

为确保数据处理的安全性,边缘设备制造商采取了多项安全措施,包括硬件加密、身份认证和防篡改设计。硬件加密可保护数据在存储和传输过程中的安全,身份认证确保设备身份的合法性,防篡改设计则通过物理防护避免外部破坏或恶意篡改。这些措施共同提升了边缘设备的整体安全性。

此外,边缘推理涉及的模型和数据的隐私保护也愈加受到重视。比如,联邦学习(Federated Learning)是一种数据隐私保护技术,它允许边缘设备在本地训练AI模型,将学习到的模型参数上传云端进行汇总,而无需共享具体数据,从而实现多设备间的协同学习和隐私保护。这一技术在医疗、金融等注重隐私的领域展现了巨大的潜力。

outside_default.png

未来趋势:边缘与云的协同共生

outside_default.png

边缘计算与云计算的结合正在塑造出一个全新的计算范式,这一范式强调的是资源和能力的最优分配,以适应不断变化的技术需求和应用场景。随着技术的不断演进,未来的智能应用将越来越依赖于边缘与云的协同共生,以达到更高效、更智能、更个性化的服务水平。

540048783c718ff54f37ebbc827ae4d0.jpeg

轻量化模型的普及

轻量化模型的发展是边缘计算广泛应用的关键。越来越多的轻量化AI模型如MobileNet和SqueezeNet,通过减少模型体积和计算量,使其在保持较高准确率的同时适配边缘设备的计算能力。这不仅让计算资源有限的设备能够运行AI应用,还显著降低了能耗,使得智能设备更环保和经济。

在智能家居和智能监控中,轻量化模型已广泛应用于智能音箱、安防摄像头等设备,支持本地语音识别、面部识别等复杂任务。这种方式加快了响应速度,同时提升了用户数据的安全性。

边缘云协同计算

随着边缘设备的普及,边缘与云端协同计算模式越来越重要。边缘设备负责实时数据处理和推理,云端则进行更复杂的全局分析。以智慧城市为例,边缘设备可即时优化交通流,而云端则进行更全面的城市数据分析,以支持长期规划和资源调配。这种模式不仅最大化了边缘和云端资源的利用,还灵活调整数据处理位置,提升系统性能。

私有化部署的边缘AI模型

在医疗、金融等隐私要求严格的行业,私有化边缘AI模型的应用越来越多。通过本地化部署,数据无需离开设备,确保敏感信息的安全。同时,定制化边缘AI模型能够满足特定业务需求,为企业带来高效、精准的数据处理和分析,增强其竞争力。随着技术成熟和隐私法规收紧,私有化部署将在更多高数据安全需求场景中得到应用。

outside_default.png

结语

outside_default.png

边缘计算与推理算力的结合,正在加速智能时代的到来。从低延迟的实时响应到隐私保护和成本控制,边缘推理成为满足现代智能应用需求的重要技术支撑。随着技术的不断进化,边缘推理的应用场景将进一步拓展,成为人类生活和工作的基础设施之一。

1428dc1b6af73a9178bbff8d9a632ec6.gif

如果您也对边缘AI感兴趣,诚挚邀请您参加今年12月14日在上海举办的第十届全球边缘计算大会!边缘5年,逐梦同行!线下参会一天,相当于在边缘计算社区学习一整年!

0231122d373770b8f30a339aef18d32a.jpeg

边缘五年,逐梦前行——第十届全球边缘计算大会强势回归!

重磅发布 | 2024边缘计算产业图谱,揭示行业未来新格局!

2024-10-31

4bcceceb30acf553dfb40f4447fe4452.jpeg

新趋势|工业AI正在转向——边缘人工智能(Edge AI)

2024-10-20

188b044b29df04cc7ad5eb65b7832d32.jpeg

干货丨《边缘算力蓝皮书》附下载

2024-10-10

3141889c56ca645cd96725e0eeaaf724.jpeg

推荐一本我们的书!绝版珍藏!🌟

2024-04-22

8a51c12ee7a30652204518423a4af404.jpeg

重磅来袭!“2024中国边缘计算企业20强”榜单发布!

2024-04-09

e6b934b6a03151aa99dfa577c8608dc5.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2239338.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于matlab的CNN食物识别分类系统,matlab深度学习分类,训练+数据集+界面

文章目录 前言🎓一、数据集准备🎓二、模型训练🍀🍀1.初始化🍀🍀2.加载数据集🍀🍀3.划分数据集,并保存到新的文件夹🍀🍀4.可视化数据集&#x1f34…

马斯克万卡集群AI数据中心引发的科技涟漪:智算数据中心挑战与机遇的全景洞察

一、AI 爆发重塑数据中心格局 随着AI 技术的迅猛发展,尤其是大模型的崛起,其对数据中心产生了极为深远的影响。大模型以其数以亿计甚至更多的参数和对海量数据的处理需求,成为了 AI 发展的核心驱动力之一,同时也为数据中心带来了…

移远通信亮相骁龙AI PC生态科技日,以领先的5G及Wi-Fi产品革新PC用户体验

PC作为人们学习、办公、娱乐的重要工具,已经深度融入我们的工作和生活。随着物联网技术的快速发展,以及人们对PC性能要求的逐步提高,AI PC成为了行业发展的重要趋势。 11月7-8日,骁龙AI PC生态科技日在深圳举办。作为高通骁龙的重…

Unity资源打包Addressable资源保存在项目中

怎么打包先看“Unity资源打包Addressable AA包” 其中遗留一个问题,下载下来的资源被保存在C盘中了,可不可以保存在项目中呢?可以。 新建了一个项目,路径与“Unity资源打包Addressable AA包”都不相同了 1.创建资源缓存路径 在…

postman变量和脚本功能介绍

1、基本概念——global、collection、environment 在postman中,为了更好的管理各类变量、测试环境以及脚本等,创建了一些概念,包括:globals、collection、environment。其实在postman中,最上层还有一个Workspaces的概…

为什么汽车电源正在用 48V 取代 12V

欧姆定律也有利于 48 伏电源 假设您需要为汽车的起动电机供电。可能存在以下静态和动态特征: 电源电压:12V 额定电流:40A 额定功率:480W 标称平均阻抗:0.3Ω 浪涌电流:150A 浪涌功率:1,8…

【webrtc】 RTP 中的 MID(Media Stream Identifier)

RTP 中的 MID(Media Stream Identifier) RID及其与MID的区别 cname与mid的对比【webrtc】CNAME 是rtprtcp中的Canonical Name(规范化名称) 同样都是RTP头部扩展: 基于mediasoup的最新的代码,学习,发现mid在创建RtpSendStream时是必须传递的参数: 例如 D:\XTRANS\soup\…

酷炫的鼠标移入效果(附源码!!)

预览效果 源码(htmljs部分) <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title>…

PHP和Python脚本的性能监测方案

目录 1. 说明 2. PHP脚本性能监测方案 2.1 安装xdebug 2.2 配置xdebug.ini 2.3 命令行与VS Code中使用 - 命令行 - VS Code 2.4 QCacheGrind 浏览 3. Python脚本性能监测方案 3.1 命令行 4. 工具 5.参考 1. 说明 获取我们的脚本程序运行时的指标&#xff0c;对分析…

【人工智能】10分钟解读-深入浅出大语言模型(LLM)——从ChatGPT到未来AI的演进

文章目录 一、前言二、GPT模型的发展历程2.1 自然语言处理的局限2.2 机器学习的崛起2.3 深度学习的兴起2.3.1 神经网络的训练2.3.2 神经网络面临的挑战 2.4 Transformer的革命性突破2.4.1 Transformer的核心组成2.4.2 Transformer的优势 2.5 GPT模型的诞生与发展2.5.1 GPT的核心…

hive中windows子句的使用

概述 1&#xff0c;windows子句是对窗口的结果做更细粒度的划分 2、windows子句中有两种方式 rows &#xff1a;按照相邻的几行进行开窗 range&#xff1a;按照某个值的范围进行开窗 使用方式 (rows | range) between (UNBOUNDED | [num]) PRECEDING AND ([num] PRECEDING…

GPT4的下一代Orion已经降速了?

嘿&#xff0c;大家好&#xff0c;我是小索奇&#xff01;说起AI&#xff0c;相信不少人都和我一样&#xff0c;总感觉这玩意儿发展得就像装了火箭&#xff0c;快得让人眼花缭乱。咱们从GPT-3到GPT-4&#xff0c;一路哇哦着过来&#xff0c;天天惊叹它越来越聪明&#xff0c;越…

【LinuxC编程】06 - 守护进程,线程

进程组和会话 概念和特性 进程组&#xff0c;也称之为作业。BSD于1980年前后向Unix中增加的一个新特性。代表一个或多个进程的集合。每个进程都属于一个进程组。在waitpid函数和kill函数的参数中都曾使用到。操作系统设计的进程组的概念&#xff0c;是为了简化对多个进程的管…

探索 Python 图像处理的瑞士军刀:Pillow 库

文章目录 探索 Python 图像处理的瑞士军刀&#xff1a;Pillow 库第一部分&#xff1a;背景介绍第二部分&#xff1a;Pillow库是什么&#xff1f;第三部分&#xff1a;如何安装这个库&#xff1f;第四部分&#xff1a;简单的库函数使用方法第五部分&#xff1a;结合场景使用库第…

【数据结构 | C++】字符串关键字的散列映射

字符串关键字的散列映射 给定一系列由大写英文字母组成的字符串关键字和素数P&#xff0c;用移位法定义的散列函数H(Key)将关键字Key中的最后3个字符映射为整数&#xff0c;每个字符占5位&#xff1b;再用除留余数法将整数映射到长度为P的散列表中。 例如将字符串AZDEG插入长…

游戏引擎学习第五天

这节貌似没讲什么 视频参考:https://www.bilibili.com/video/BV1Gmm2Y5EwE/ uint8 *A somewhere in memory; uint8 *B somewhere in memory;//BEFORE WE GOT TO HERE int Y *B; // whatever was actually there before the 5 *A 5; int X *B; // 5 //Obviously! Y and …

Linux——基础指令2 + 权限

目录 1.zip/unzip 2.tar 3.bc 4.uname –r 5.重要的几个热键 6.扩展命令 7.shell命令以及运行原理 8.Linux权限的理解 关于权限的三个问题&#xff1a; 1.目录权限 2.缺省权限 3.粘滞位 1.zip/unzip 打包、压缩&#xff1a;使用特定的算法&#xff0c;文件进行合…

摄像机视频分析软件下载LiteAIServer视频智能分析软件抖动检测的技术实现

在现代社会中&#xff0c;视频监控系统扮演着至关重要的角色&#xff0c;其可靠性和有效性在很大程度上取决于视频质量。然而&#xff0c;由于多种因素&#xff0c;如摄像机安装不当、外部环境振动或视频信号传输的不稳定&#xff0c;视频画面常常出现抖动问题&#xff0c;这不…

Pandas | 数据分析时将特定列转换为数字类型 float64 或 int64的方法

类型转换 传统方法astype使用value_counts统计通过apply替换并使用astype转换 pd.to_numericx对连续变量进行转化⭐参数&#xff1a;返回值&#xff1a;示例代码&#xff1a; isnull不会检查空字符串 数据准备 有一组数据信息如下&#xff0c;其中主要将TotalCharges、MonthlyC…

Fish Agent V0.13B:Fish Audio的语音处理新突破,AI语音助手的未来已来!

近日&#xff0c;Fish Audio公司发布了一款全新的语音处理模型——Fish Agent V0.13B&#xff0c;这款模型以其高效、精确的语音生成和处理能力&#xff0c;尤其是在模拟或克隆不同声音方面的表现&#xff0c;引起了广泛关注。这不仅意味着我们在拥有一个声音自然、反应迅速的A…