(蓝桥杯C/C++)——基础算法(下)

news2025/1/17 21:53:13

目录

一、时空复杂度

1.时间复杂度

2.空间复杂度

3.分析技巧

4.代码示例

二、递归

1.递归的介绍

2.递归如何实现

3.递归和循环的比较

4.代码示例

三、差分

1.差分的原理和特点

2.差分的实现

3.例题讲解

四、枚举

1.枚举算法介绍

2.解空间的类型

3. 循环枚举解空间

4.例题讲解

五、前缀和

1.前缀和原理和特点

2.实现前缀和

3.代码示例

六、离散化

1.离散化简介

2.离散化的实现方法

4.代码示例


一、时空复杂度

1.时间复杂度

(1)时间复杂度是衡量算法执行时间随输入规模增长的增长率。
(2)通过分析算法中基本操作的执行次数来确定时间复杂度。
(3)常见的时间复杂度包括:常数时间 0(1)、线性时间 O(n)、对数时间 O(logn)、平方时间O(n^2)等。
(4)在计算的时候我们关注的是复杂度的数量级,并不要求严格的表达式。

一般我们关注的是最坏时间复杂度,用O(f(n))表示,大多数时候我们仅需估算即可-般来说,评测机1秒大约可以跑2e8次运算,我们要尽可能地让我们的程序运算规模级控制在1e8以内。

2.空间复杂度


(1)空间复杂度是衡量算法执行过程中所需的存储空间随输入规模增长的增长率。
(2)通过分析算法中所使用的额外存储空间的大小来确定空间复杂度。
(3)常见的空间复杂度包括:常数空间 0(1)、线性空间 0(n)、对数空间 0(logn)、平方空间0(n^2)等。

一般我们关注的是最坏空间复杂度,用O(f(n))表示,大多数时候程序占用的空间一般可以据开的数组大小精确算出,但也存在需要估算的情况。题目一般不会卡空间,一般是卡时1举个例子,假如题目限制128MB,1int~32bit~4Bytes,128MB~32*2^20int~3e7int

3.分析技巧

1.理解基本操作:基本操作可以是算术运算(加法、乘法、位运算等)、比较操作、赋值操作等。

2.关注循环结构:循环是算法中常见的结构,它的执行次数对于时间复杂度的分析至关重要

3.递归算法:递归算法的时间和空间复杂度分析相对复杂。需要确定递归的深度以及每个归调用的时间和空间开销。

4.最坏情况分析:对于时间复杂度的分析,通常考虑最坏情况下的执行时间。要考虑输入数据使得算法执行时间达到最大值的情况。

5.善用结论:某些常见算法的时间和空间复杂度已经被广泛研究和证明。可以利用这些已知结果来分析算法的复杂度。


4.代码示例

时间复杂度:O(n)该算法使用迭代的方式计算斐波那契数列的第n个数,循环遍历n次,因此时间复杂度与n成正比。

//斐波那契数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)

空间复杂度:O(1)算法只使用了常数级别的额外空间来存储变量,不随输入规模变化。

#include <iostream>

usinp namespace std;
int fibonacci(int n)

{
      if(n←1)
         return n;


             int prev1 = 0:
             int prev2 = 1;
             int fib = 0;

            for (int i =2;i <= n ;i++)

           {     

                   fib = prev1 =  prev2;

                   prev1 = prev2;

                    prev2 = fib;

          }
          return fib;

}
int main()

{
       int n;
       cout  <<  "Enter the position: ";
       cin >> n;

       int result = fibonacci(n);
        cout << "Fibcnacci number at position " << n << " : "<< result <<endl;

return 0;

}

二、递归

1.递归的介绍

概念:递归是指函数直接或间接调用自身的过程。

解释递归的两个关键要素:

基本情况(递归终止条件):递归函数中的一个条件,当满足该条件时,递归终止,避免无限递归。可以理解为直接解决极小规模问题的方法。
递归表达式(递归调用):递归函数中的语句,用于解决规模更小的子问题,再将子问题的答案合井成为当前问题的答案。

2.递归如何实现

递归函数的基本结构如下:
返回类型 函数名(参数列表)

  {

     //基本情况(递归终止条件)

     if(满足终止条件)

   {

         //返回终止条件下的结果

   }

         //递归表达式(递归调用)

   else

  {

         //将问题分解为规模更小的子问题

         //使用递归调用解决子问题

         // 返回子问题的结果

   }

}

实现过程:

1.将大问题分解为规模更小的子问题。

2.使用递归调用解决每个子问题。

3.通过递归终止条件来结束递归。

设计时需注意的细节:

1.确保递归一定能到递归出口,避免无限递归,这可能导致TLE(超时)、MLE(超内存)或RE(运行错误)。

2.考虑边界条件,有时候递归出口不止一个

3.避免不必要的重复计算,尽可能优化递归函数的性能(例如使用记忆化)。

3.递归和循环的比较

递归的特点:

1.直观、简洁,易于理解和实现。

2.适用于问题的规模可以通过递归调用不断减小的情况。

3.可以处理复杂的数据结构和算法,如树和图的遍历。

4.存在栈溢出风险(栈空间一般只有8MB,所以递归层数不宜过深,一般不超过1e6层)。

循环的特点:

1.直接控制流程,效率较高。

2.适用于问题的规模没有明显的缩减,或者需要特定的选代次数。

3.适合处理大部分的动态规划问题。

在部分情况下,递归和循环可以相互转化。

4.代码示例

斐波那契数列
已知F(1)=F(2)= 1;
n>3时F(n)=F(n-1)+F(n-2)
输入n,求F(n),n<=100000,结果对1e9+7取模。

#include<bits/stdc++.h>
using namespace std;
using ll =  long long;

const int N =  1e5 + 9;

const ll p= 1e9 +7;

ll fib(int n)

{
if( n <=2 )

return 1;

return (fib(n - 1) + fib(n - 2)) % p;
}
int main()

{
int n;

cin >> n;

for(int i = 1 ;i <= n; ++ i)

cout << fib(i) << '\n';

return 0;

}

三、差分

1.差分的原理和特点

对于一个数组a[ ],差分数组diff[]的定义是:
diffi]=a[i]-a[i-1]
对差分数组做前缀和可以还原为原数组:

diff[1]=a[1]

diff[2] = a[2]- a[1]

diff[3]= a[3]-a[2]

diff[n]=a[n]-a|n-1]


  diff[1]+ diff[2]+ diff[3]+...+diff[i]

= a[1] +(a[2]-a [1])+(a[3]- α[2])+...+(a[i]-a[i-1])
= a[i]

利用差分数组可以实现快速的区间修改,下面是将区间[,r]都加上x的方法:
diff[l] += x;

diff[r +1] -= x;


在修改完成后,需要做前缀和恢复为原数组,所以上面这段代码的含义是:
diff[l] += x表示将区间[l,n]都加上x,

但是[r+1,n]我们并不想加x,所以再将[r+1,n]减去x即可。

但是注意,差分数组不能实现“边修改边查询(区间和)”,只能实现“多次修改完次查询”。如果要实现“边修改边查询”需要使用树状数组、线段树等数据结构。

2.差分的实现

直接用循环O(n)实现即可,注意这里建议使得a[0]=0,下标从1开始
for(int i = 1;i <= n; ++ i)

diff[a[i]=a[i]-a[i- 1];

将区间[l,r]都加上x:
diff[l] += x;

diff[r + 1]-= x;

3.例题讲解

小明拥有 N 个彩灯,第i个彩灯的初始亮度为 ai,
小明将进行 Q 次操作,每次操作可选择一段区间,并使区间内彩灯的亮度 + x(x 可能为负数)。
求 Q 次操作后每个彩灯的亮度(若彩灯亮度为负数则输出 0)。

利用差分数组对数组a进行区间修改即可
注意输出时亮度如果为负数则输出0,需要开longlong。

#include<bits/stdc++.h>
using namespace std;
using ll =  long long;

const int N =  1e6 + 3;

ll a[N],d[N];

void solve()

{

  int n,m;

 cin >> n >>m;

  for(int i = 1;i <= n;++i)

  cin >> a[i];

for(int i = 1;i <= n;++i)

  d[i] = a[i] - a[i-1];

while(n --)

{

 intl, r, v,;

 cin >> l >>r >>v;

  d[l] +=v,d[r + 1] -= v;

}

  //前缀和还原

   for(int i = 1;i <= n;++i)

a[i] = a[i-1] + d[i];

     for(int i = 1;i <= n;++i)

cout << max(011, a[i]) << '\n'(i == n);

}

int main()

{

 solve();

 return 0;

}

   

四、枚举

1.枚举算法介绍

枚举算法是一种基本的算法思想,它通过穷举所有可能的情况来解决问题。它的基本思想是将问题的解空间中的每个可能的解都枚举出来,并进行验证和比较,找到满足问题条件的最优解或者所有解。
枚举算法适用于问题规模较小、解空间可穷举的情况。它的优点是简单直观,不需要复杂的数学推导,易于实现。但是,由于需要穷举所有可能的情况,对于问题规模较大的情况,枚举算法的时间复杂度可能会非常高,效率较低。

2.解空间的类型

一个问题的解空间是它的所有可能的解构成的集合

解空间可以是一个范围内的所有数字(或二元组、字符串等数据),或者满足某个条件的所
有数字。
当然也可以是解空间树,一般可分为子集树和排列树,针对解空间树,需要使用回溯法进行
枚举。
我们目前仅使用循环去暴力枚举解空间,具体的解空间类型需要根据题目来理解构造。

3. 循环枚举解空间

1.首先确定解空间的维度,即问题中需要枚举的变量个数。
例如当题目要求的是满足条件的数字时,我们可以循环枚举某个范围内的数字。
如果要求的是满足条件的二元组,我们可以用双重循环分别枚举第一个和第二个变量,从而构造出一个二元组。
2.对于每个变量,确定其可能的取值范围。这些范围可以根据问题的性质和约束条件来确定这一步往往是时间复杂度优化的关键。
3.在循环体内,针对每个可能解进行处理。可以进行问题的验证、计算、输出等操作。


4.例题讲解

题目描述
小明对数位中含有 2、0、1、9的数字很感兴趣(不包括前导 0),在1到 40中这样的数包括1、2、9、10至32、39 和 40,共 28 个,他们的和是 574.
请问,在1到n中,所有这样的数的和是多少?

枚举所有数字(解空间)用一个函数判断某个数字是否是特别的数,将满足条件的数字求和即可。

#include<bits/stdc++.h>
using namespace std;

bool f(int x)

{

  while(x)

    {

      int y = x % 10;

      if(y == 2 || y == 0 || y == 9)

      return  turn;

       x /= 10;

     }

}

int main()

{   

     int n;

     cin >> n;

     int ans = 0;  

         for(int i = 1;i <= n;++i)

     {

       if (f (i))

       ans += i;

      }

   cout << ans<< '\n';

   return 0;

}

五、前缀和

1.前缀和原理和特点


prefix表示前缀和,前缀和由一个用户输入的数组生成。

对于一个数组a[](下标从1开始),我们定义一个前缀和数组prefix,满足:
prefix[i] => \sum_{j-1}^{i-1} a[j]

prefix有一个重要的特性,可以用于快速生成prefix:

prefix[i] = \sum_{j-1}^{i-1} a|j]  + a[i] = prefix |i-1] + a[i]

prefix可以O(1)的求数组a几]的一段区间的和:

sum(l,r) = prefix [r] - prefix [l-1]
但是注意,prefix是一种预处理算法,只适用于a数组为静态数组的情况,即a数组中的元素在区间和查询过程中不会进行修改。
如果需要实现“先区间修改,再区间查询”可以使用差分数组,如果需要“一边修改,一边查询”需要使用树状数组或线段树等数据结构。

2.实现前缀和

利用前面讲过的特性:
prefix[i]= prefix[i - 1] + a[i]
我们的数组下标均从1开始,a[0]=0,从前往后循环计算即可。
for(int i = 1;i <= n; ++ i)

prefix[i]= prefix[i - 1] + a[i];


求区间和:
sum(L, R) = prefix[R]-prefix[L-1]

3.代码示例

问题描述
平衡串指的是一个字符串,其中包含两种不同字符,并且这两种字为的数量相
等。

例如,ababab和aababb都是平衡串,因为每种字符各有三个,而abaab和aaaab 都不是平衡串,因为它们的字符数量不相等。

小郑拿到一个只包含L、Q的字符串,他的任务就是找到最长平衡串,且满足平衡串的要求,即保证子串中L、Q的数量相等。

#include <bits/stdc++.h>

using namespace std;
const int N = 1010;
char s[N];

int prefix[N];

int main()

{

 cin >> s + 1;

  int n = strlen(s + 1);

  for(int i = 1;i <= n;++i)

 prefix[i] =  prefix[i - 1] + (s[i] == 'L' ? 1: -1);

int ans = 0;

  for(int i = 1;i <= n;++i)

     for(int j = i;j <= n;++j)

          if(prefix[j] =  prefix[i - 1] == 0)

        ans = max(ans ,j - i + 1);

cout << ans<< '\n';

return 0;

    }

}

六、离散化

1.离散化简介

把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率。

离散化是一种将数组的值域压缩,从而更加关注元素的大小关系的算法。当原数组中的数字很大、负数、小数时(大多数情况下是数字很大),难以将“元素值”表示为“数组下标”,一些依靠下标实现的算法和数据结构无法实现时,我们就可以考虑将其离散化。

例如原数组的范围是[1,1e9],而数组大小仅为1e5,那么说明元素值的“种类数”最多也就1e5种,从而可以利用一个数组(即离散化数组)来表示某个元素值的排名(即第几小)现值域的压缩,将原数组的元素值作为下标来处理。

离散化数组要求内部是有序(一般是去重的,当然也存在不去重的方法,但是比较少见)的,中可以直接通过离散化下标得到值,当然也可以通过值得到离散化下标(通过二分实现)。下面是一个离散化的例子:
 

a(原数组)

(离散化数组)

index(下标)

不使用

2

0

3

3

1

1000

1000

2

2

9999

3

9999

4

2

5

离散化不会单独考察,一般会结合其他算法或数据结构一起考察,例如树状数组、线段树、二维平面的计算几何等等。

2.离散化的实现方法

离散化的实现方法比较多样,但原理相同,这里采用vector来进行离散化。

#include <bits/stdc++.h>

using namespace std;
vector<int> L;//离散化数组
//返回x在L中的下标

int getidx(int x)

{
return lower_ bound( L.begin(),L.end(),x)-L.begin();

}
const int N=1e5 + 9;
int a[n];
int main()

{
int n;

cin >> n;

for(int i = 1;i <= n; ++ i)

cin >> a[i];
//将元素存入L数组中

for(int i = 1;i <= n; ++ i)

L.push back(a[i]);
//排序去重
L.erase(unique(L.begin(),L.end()),L.end());
return 0;

}

4.代码示例

#include <bits/stdc++.h>

using namespace std;
const int N = le5 + 9;
vector<int> L;
int getidx(int x)

{
return lower_bound(L.begin(),L.end(),x) - L.begin

}
int main()
int n;

cin >> n;

for(int i = 1;i <= n; ++ i)

cin >> a[i];

for(int i = 1;i <= n; ++ i)

L.push_ back(a[i]);
sort(L.begin(),L.end());

L.erase(unique(L.begin(),L.end()),L.end());
cout<<“离散化数组为:”;

for(const auto &i : L)

cout << i < ' ' ;

cout << '\n';
int val;

cin >> val;
cout << getidx(val)<< '\n';

return 0;

}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2235872.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

7.5 inch电力线载波通信技术

7.5寸电子桌牌 产品型号 PE75R_D_W 尺寸 176.2*137.15*80mm 屏幕尺寸 7.5 inch 显示区域(mm) 163.2(H) * 97.92(V) 分辨率 800*480 显示技术 电子墨水屏双面显示 显示颜色 黑/白/红 外观颜色 银色 工作温度 0-40℃ 视角 180 支持内容格式 文本/图片/二维码…

Linux下的ADC

ADC ADC简介 ADC是 Analog Digital Converter 的缩写&#xff0c;翻译过来为模数转换器&#xff0c;ADC可以将模拟值转换成数字值。模拟值是什么呢?比如我们日常生活中的温度&#xff0c;速度&#xff0c;湿度等等都是模拟值。所以如果我们想测量这些模拟值的值是多少&#x…

星空天文 2.0.1| 完全免费的观星软件,无注册登录,天文爱好者必备。

星空天文是一款完全免费且功能强大的观星软件&#xff0c;适用于安卓平台。无需注册登录即可使用&#xff0c;界面设计精美且操作简单。软件支持AR实景模式&#xff0c;可以将实景与星空结合&#xff0c;增强观星体验。用户可以设定任意日期和时间来观察不同时段的天空&#xf…

书生大模型实战营第四期-入门岛-1. Linux前置基础

入门岛-Linux前置基础 书生大模型实战营-第四期-Linux前置基础&#xff1a; 任务&#xff1a;https://github.com/InternLM/Tutorial/blob/camp4/docs/L0/linux/task.md 文档&#xff1a;https://github.com/InternLM/Tutorial/tree/camp4/docs/L0/linux 任务描述完成所需时…

JavaEE初阶--servlet篇(三)HttpServlet/response/request对应方法使用

文章目录 1.总括说明2.httpservlet父类2.1方法介绍2.2dopost方法的演示2.3doput方法的演示 3.HttpServletRequest类3.1方法说明3.2方法使用演示3.3getparameter方法使用3.4使用form表单的方式3.5jackson获取参数 4.HttpResponse类4.1设置状态码4.2自动进行刷新4.3重定向跳转4.3…

前后端分离,Jackson,Long精度丢失

案例:后端接口放回一个Long数据 GetMapping("/testForLong")public Map<String, Object> testForLong() {Map<String, Object> map new HashMap<>();map.put("aaa", 1234567890123456789L);return map;}实际前端接收的数据 前后端数据…

记某单位众测项目漏洞挖掘中的一些手法

&#x1f36c; 博主介绍 &#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 一个想当文人的黑客 &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【应急响应】 【edusrc漏洞挖掘】 【VulnHub靶场复现】【面试分析】 &#x1f389;欢迎…

用 Python 写了一个天天酷跑(附源码)

Hello&#xff0c;大家好&#xff0c;给大家说一下&#xff0c;我要开始装逼了 这期写个天天酷跑玩一下叭&#xff01; 制作一个完整的“天天酷跑”游戏涉及很多方面&#xff0c;包括图形渲染、物理引擎、用户输入处理、游戏逻辑等。由于Python是一种高级编程语言&#xff0c;…

芯片设计公司ERP系统如何实现一体化管理

在当今高科技迅猛发展的时代&#xff0c;芯片设计行业作为信息技术的核心&#xff0c;正面临着日益激烈的市场竞争和复杂多变的市场需求。为了提升企业的运营效率和市场竞争力&#xff0c;芯片设计公司纷纷引入ERP(企业资源计划)系统&#xff0c;以实现一体化管理。接下来我们跟…

50岁+人群月活超1亿,短剧迎来新对手,小程序游戏“收割”中老年

抢夺中老年流量&#xff1a;微短剧向左&#xff0c;小游戏向右 作者&#xff5c;AgeClub 干货抢先看 1.《黑神话&#xff1a;悟空》走红&#xff0c;吸引大量玩家入坑单机市场。与硬核单机游戏不同&#xff0c;在渗透率更高的小游戏领域&#xff0c;聚集了更多“网瘾”中老年…

手机如何打开chm文件

chm文件一般是帮助文档&#xff0c;手机一般不能直接打开&#xff0c;我们可以通过下载阅读器来打开 以荣耀手机为例 首先下载掌阅iReaderAPP 下载完成后打开掌阅 点击书架&#xff0c;右上角本机导入 搜索你下载的chm文件的名字 勾选&#xff0c;加入书架(应该保留目录) 在书…

《重学Java设计模式》之 工厂方法模式

《重学Java设计模式》之 建造者模式 《重学Java设计模式》之 原型模式 《重学Java设计模式》之 单例模式 模拟发奖多种商品 工程结构 奖品发放接口 package com.yys.mes.design.factory.store;public interface ICommodity {/*** Author Sherry* Date 14:20 2024/11/6**/voi…

【算法与数据结构】【链表篇】【题1-题5】

题1.从尾到头打印链表 题目&#xff1a;输入一个链表的头结点&#xff0c;从尾到头反过来打印出每个节点的值。链表的定义如下&#xff1a; struct ListNode {int mValue;ListNode *mNext;ListNode *mPrev; }; 1.1 方法一&#xff1a;栈 思路&#xff1a;要反过来打印&…

28.医院管理系统(基于springboot和vue)

目录 1.系统的受众说明 2. 相关技术和开发环境 2.1 相关技术 2.1.1 Java语言 2.1.2 HTML、CSS、JavaScript 2.1.3 Redis 2.1.4 MySQL 2.1.5 SSM框架 2.1.6 Vue.js 2.1.7 SpringBoot 2.2 开发环境 3. 系统分析 3.1 可行性分析 3.1.1 经济可行性 3.1.2 技术…

Mysql基础 01 数据与sql

文章目录 一、基本概念二、mysql的常用命令三、sql规范四、数据类型五、SQL语句 一、基本概念 数据库(database,DB)&#xff1a;存储数据的仓库。 数据库管理系统软件(Database Management System,DBMS)&#xff1a;是一种操作和管理数据库的大型软件。常见的DBMS有oracle、s…

爬虫-------字体反爬

目录 一、了解什么是字体加密 二. 定位字体位置 三. python处理字体 1. 工具库 2. 字体读取 3. 处理字体 案例1:起点 案例2:字符偏移: 5请求数据 - 发现偏移量 5.4 多套字体替换 套用模板 版本1 版本2 四.项目实战 1. 采集目标 2. 逆向结果 一、了解什么是…

数据分析:宏基因组DESeq2差异分析筛选差异物种

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍原理:计算步骤:结果:加载R包准备画图主题数据链接导入数据Differential abundance (No BP vs 2BP TA)构建`countData`矩阵过滤低丰度物种构建DESeq数据对象DESeq2差异分析画图Di…

【手撕排序2】快速排序

&#x1f343; 如果觉得本系列文章内容还不错&#xff0c;欢迎订阅&#x1f6a9; &#x1f38a;个人主页:小编的个人主页 &#x1f380; &#x1f389;欢迎大家点赞&#x1f44d;收藏⭐文章 ✌️ &#x1f91e; &#x1f91f; &#x1f918; &#x1f919; &#x1f448; &…

OpenCV自学系列(1)——简介和GUI特征操作

与另一个计算机视觉系列相对应&#xff0c;本系列主要探索OpenCV的具体操作。 学习资源&#xff1a;官网教程 https://docs.opencv.org/4.x/d6/d00/tutorial_py_root.htmlhttps://docs.opencv.org/4.x/d6/d00/tutorial_py_root.html 所有源码均上传至仓库&#xff1a; http…

KION Group EDI 需求分析

梳理EDI需求资料 KION Group将EDI项目中需要的资料公开在其官网上&#xff0c;企业可以点击在 KION Group 官网下载 EDI需求资料 企业可以在以上网址中获取到如下资料&#xff1a; 1.KION Group EDI团队的联系信息以及EDI连接信息 KION Group EDI团队支持7*24小时的支持&am…