R实验——logistic回归、LDA、QDAKNN

news2024/11/24 11:02:49

数据集介绍:

mpg,miles per gallon即油耗,这个数据集来自卡内基梅隆大学维护的StatLib库。1983年美国统计协会博览会使用了该数据集。这个数据集是对StatLib库中提供的数据集稍加修改的版本。根据Ross Quinlan(1993)在预测属性“mpg”中的使用,删除了 8 个原始实例,因为它们的“mpg”属性值未知。原始数据集在“auto-mpg.data-original”文件中。
该数据集共计9个特征,398个样本,用于回归任务。“该数据涉及城市周期燃料消耗(单位为每加仑英里),将根据3个多值离散和5个连续属性进行预测。”(昆兰,1993)

序号英文名中文名类型备注
1mpg油耗, milesper galloncontinuous
2cylinders气缸数量multi-valued discrete
3displacement排气量/排量continuous
4horsepower马力continuous存在6个缺失值
5weight重量continuous
6acceleration加速度continuous
7model_year出厂时间multi-valued discrete
8origin产地multi-valueddiscrete
9name车品牌,比如bmw 320istring (unique for each instance)

数据集下载

seaborn-data

mpg汽车油耗数据集的下载

下载链接:https://github.com/mwaskom/seaborn-data/blob/master/mpg.csv
在这里插入图片描述

mpg汽车油耗数据集的使用方法

相关文章
ML之PFI(eli5):基于mpg汽车油耗数据集利用RF随机森林算法和PFI置换特征重要性算法实现模型特征可解释性排序

实验预测油耗的高低(基于R语言)——logistic回归、LDA、QDA&KNN实现

Auto(汽车数据集):建立模型预测油耗的高低。

a:建立一个二元变量mpg01,1表示mpg位于中位数之上,0表示位于中位数之下。

library(ISLR)
summary(Auto)
attach(Auto)
mpg01 = rep(0, length(mpg))
mpg01[mpg>median(mpg)] = 1
Auto = data.frame(Auto, mpg01)

输出结果:

     mpg          cylinders      displacement     horsepower   
 Min.   : 9.00   Min.   :3.000   Min.   : 68.0   Min.   : 46.0  
 1st Qu.:17.00   1st Qu.:4.000   1st Qu.:105.0   1st Qu.: 75.0  
 Median :22.75   Median :4.000   Median :151.0   Median : 93.5  
 Mean   :23.45   Mean   :5.472   Mean   :194.4   Mean   :104.5  
 3rd Qu.:29.00   3rd Qu.:8.000   3rd Qu.:275.8   3rd Qu.:126.0  
 Max.   :46.60   Max.   :8.000   Max.   :455.0   Max.   :230.0  
                                                                
     weight      acceleration        year           origin     
 Min.   :1613   Min.   : 8.00   Min.   :70.00   Min.   :1.000  
 1st Qu.:2225   1st Qu.:13.78   1st Qu.:73.00   1st Qu.:1.000  
 Median :2804   Median :15.50   Median :76.00   Median :1.000  
 Mean   :2978   Mean   :15.54   Mean   :75.98   Mean   :1.577  
 3rd Qu.:3615   3rd Qu.:17.02   3rd Qu.:79.00   3rd Qu.:2.000  
 Max.   :5140   Max.   :24.80   Max.   :82.00   Max.   :3.000  
                                                               
                 name    
 amc matador       :  5  
 ford pinto        :  5  
 toyota corolla    :  5  
 amc gremlin       :  4  
 amc hornet        :  4  
 chevrolet chevette:  4  
 (Other)           :365  

b:探究mpg01与其他特征之间的关系

cor(Auto[,-9])
pairs(Auto) # doesn't work well since mpg01 is 0 or 1

输出结果:

cor(Auto[,-9])

                    mpg  cylinders displacement horsepower     weight
mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
mpg01         0.8369392 -0.7591939   -0.7534766 -0.6670526 -0.7577566
             acceleration       year     origin      mpg01
mpg             0.4233285  0.5805410  0.5652088  0.8369392
cylinders      -0.5046834 -0.3456474 -0.5689316 -0.7591939
displacement   -0.5438005 -0.3698552 -0.6145351 -0.7534766
horsepower     -0.6891955 -0.4163615 -0.4551715 -0.6670526
weight         -0.4168392 -0.3091199 -0.5850054 -0.7577566
acceleration    1.0000000  0.2903161  0.2127458  0.3468215
year            0.2903161  1.0000000  0.1815277  0.4299042
origin          0.2127458  0.1815277  1.0000000  0.5136984
mpg01           0.3468215  0.4299042  0.5136984  1.0000000

pairs(Auto)

在这里插入图片描述
分析:油耗与气缸、重量、排量、马力负相关。(当然是英里/小时)
Anti-correlated with cylinders, weight, displacement, horsepower.
(mpg, of course)

c:将数据集划分为训练集与测试集

train = (year %% 2 == 0) # if the year is even
test = !train
Auto.train = Auto[train,]
Auto.test = Auto[test,]
mpg01.test = mpg01[test]

d:LDA预测

# LDA
library(MASS)
lda.fit = lda(mpg01~cylinders+weight+displacement+horsepower,
              data=Auto, subset=train)
lda.pred = predict(lda.fit, Auto.test)
mean(lda.pred$class != mpg01.test)

输出:

[1] 0.1263736

分析:测试错误率为 12.6%、12.6% test error rate.

预测

# LDA预测
lda.pred

输出结果

$class
  [1] 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
 [35] 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 0 0
 [69] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1
[103] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0
[137] 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
[171] 1 1 1 1 1 0 0 0 0 0 0 0
Levels: 0 1

$posterior
               0            1
30  0.0045910561 9.954089e-01
31  0.0065617312 9.934383e-01
32  0.0055306751 9.944693e-01
34  0.4700231377 5.299769e-01
35  0.9246391446 7.536086e-02
36  0.8994586798 1.005413e-01
37  0.9095449455 9.045505e-02
38  0.8886590688 1.113409e-01
39  0.9996075013 3.924987e-04
40  0.9997884093 2.115907e-04
41  0.9996158412 3.841588e-04
42  0.9995756128 4.243872e-04
43  0.9999566445 4.335551e-05
44  0.9999247439 7.525613e-05
45  0.9999781595 2.184047e-05
46  0.6845523698 3.154476e-01
47  0.0144177336 9.855823e-01
48  0.8842517121 1.157483e-01
49  0.8532696513 1.467303e-01
50  0.0062127971 9.937872e-01
51  0.0042266707 9.957733e-01
52  0.0053134766 9.946865e-01
53  0.0045957219 9.954043e-01
54  0.0021365551 9.978634e-01
55  0.0011643117 9.988357e-01
56  0.0027617173 9.972383e-01
57  0.0035131295 9.964869e-01
86  0.9993272140 6.727860e-04
87  0.9982707887 1.729211e-03
88  0.9994166130 5.833870e-04
89  0.9996020974 3.979026e-04
90  0.9987616453 1.238355e-03
91  0.9999364862 6.351381e-05
92  0.9998626849 1.373151e-04
93  0.9997924091 2.075909e-04
94  0.9997356947 2.643053e-04
95  0.9998207680 1.792320e-04
96  0.9998948108 1.051892e-04
97  0.9982614357 1.738564e-03
98  0.8082637585 1.917362e-01
99  0.8828691717 1.171308e-01
100 0.7160149184 2.839851e-01
101 0.7964168372 2.035832e-01
102 0.7146692448 2.853308e-01
103 0.0051825938 9.948174e-01
104 0.9999770863 2.291369e-05
105 0.9999582582 4.174182e-05
106 0.9999027355 9.726451e-05
107 0.9998079177 1.920823e-04
108 0.5988520215 4.011480e-01
109 0.0075512257 9.924488e-01
110 0.0140873470 9.859127e-01
111 0.0093708282 9.906292e-01
112 0.0006271827 9.993728e-01
113 0.0085329437 9.914671e-01
114 0.3353060101 6.646940e-01
115 0.0069543538 9.930456e-01
116 0.9995745243 4.254757e-04
117 0.9989773896 1.022610e-03
118 0.0038727359 9.961273e-01
119 0.0061505155 9.938495e-01
120 0.0191761103 9.808239e-01
121 0.0340153619 9.659846e-01
122 0.9956046786 4.395321e-03
123 0.0178011055 9.821989e-01
124 0.5449767863 4.550232e-01
125 0.9968340831 3.165917e-03
153 0.8901396280 1.098604e-01
154 0.9269990700 7.300093e-02
155 0.9535406793 4.645932e-02
156 0.8910079960 1.089920e-01
157 0.9999022002 9.779979e-05
158 0.9998721607 1.278393e-04
159 0.9998900080 1.099920e-04
160 0.9999349592 6.504077e-05
161 0.9817475104 1.825249e-02
162 0.9822415939 1.775841e-02
163 0.9662660098 3.373399e-02
164 0.9790103253 2.098967e-02
165 0.7443902358 2.556098e-01
166 0.9962798160 3.720184e-03
167 0.9935318245 6.468176e-03
168 0.0065845245 9.934155e-01
169 0.0256060393 9.743940e-01
170 0.6943705183 3.056295e-01
171 0.0238834085 9.761166e-01
172 0.0254731042 9.745269e-01
173 0.0084647415 9.915353e-01
174 0.0152263317 9.847737e-01
175 0.7663463969 2.336536e-01
176 0.0033119914 9.966880e-01
177 0.8798920740 1.201079e-01
178 0.0258574413 9.741426e-01
179 0.0671780329 9.328220e-01
180 0.0549156423 9.450844e-01
181 0.0169554063 9.830446e-01
182 0.0027560511 9.972439e-01
217 0.0048691169 9.951309e-01
218 0.0056241068 9.943759e-01
219 0.0028399014 9.971601e-01
220 0.0068330682 9.931669e-01
221 0.0034242383 9.965758e-01
222 0.9992097175 7.902825e-04
223 0.9997777693 2.222307e-04
224 0.9996642311 3.357689e-04
225 0.9998492845 1.507155e-04
226 0.9346200911 6.537991e-02
227 0.9207223981 7.927760e-02
228 0.9621407741 3.785923e-02
229 0.9470647910 5.293521e-02
230 0.9994764827 5.235173e-04
231 0.9995039180 4.960820e-04
232 0.9995625862 4.374138e-04
233 0.9998048110 1.951890e-04
234 0.0028877526 9.971122e-01
235 0.0322766192 9.677234e-01
236 0.0090077095 9.909923e-01
237 0.0337949867 9.662050e-01
238 0.0054141298 9.945859e-01
239 0.0041576296 9.958424e-01
240 0.0040582954 9.959417e-01
241 0.0066630758 9.933369e-01
242 0.6576528019 3.423472e-01
243 0.0145988174 9.854012e-01
244 0.0032352022 9.967648e-01
281 0.8421745935 1.578254e-01
282 0.7985809380 2.014191e-01
283 0.0530394374 9.469606e-01
284 0.8977826055 1.022174e-01
285 0.8961554200 1.038446e-01
286 0.9993025736 6.974264e-04
287 0.9989955407 1.004459e-03
288 0.9994217829 5.782171e-04
289 0.9992001292 7.998708e-04
290 0.9998011701 1.988299e-04
291 0.9995556216 4.443784e-04
292 0.9986607432 1.339257e-03
293 0.9992428529 7.571471e-04
294 0.0031312461 9.968688e-01
295 0.0041211977 9.958788e-01
296 0.0025623025 9.974377e-01
297 0.0305312353 9.694688e-01
298 0.7985134354 2.014866e-01
299 0.9994452247 5.547753e-04
300 0.1705698782 8.294301e-01
301 0.9986514799 1.348520e-03
302 0.0078216014 9.921784e-01
303 0.0066201649 9.933798e-01
304 0.0047968503 9.952031e-01
305 0.0064161291 9.935839e-01
306 0.0248345809 9.751654e-01
307 0.3933926435 6.066074e-01
308 0.4799314963 5.200685e-01
309 0.0170675289 9.829325e-01
339 0.0155152020 9.844848e-01
340 0.0245026156 9.754974e-01
341 0.0202427011 9.797573e-01
342 0.5225253302 4.774747e-01
343 0.0109538014 9.890462e-01
344 0.0022460963 9.977539e-01
345 0.0029999889 9.970000e-01
346 0.0022007869 9.977992e-01
347 0.0053030344 9.946970e-01
348 0.0041265903 9.958734e-01
349 0.0055546032 9.944454e-01
350 0.0040204006 9.959796e-01
351 0.0092711452 9.907289e-01
352 0.0051271359 9.948729e-01
353 0.0156331189 9.843669e-01
354 0.0070629716 9.929370e-01
356 0.0074023063 9.925977e-01
357 0.0117799660 9.882200e-01
358 0.0182332197 9.817668e-01
359 0.0301638639 9.698361e-01
360 0.1675777688 8.324222e-01
361 0.8981173412 1.018827e-01
362 0.6412669001 3.587331e-01
363 0.6550586441 3.449414e-01
364 0.9115022704 8.849773e-02
365 0.9992934606 7.065394e-04
366 0.8264574559 1.735425e-01
367 0.9498089617 5.019104e-02

$x
            LD1
30   1.65155995
31   1.52899567
32   1.58769048
34  -0.14325405
35  -1.03986617
36  -0.93205729
37  -0.97194222
38  -0.89311410
39  -2.86078063
40  -3.07171525
41  -2.86811332
42  -2.83411096
43  -3.61278415
44  -3.42456709
45  -3.84679996
46  -0.44864383
47   1.25762519
48  -0.87816827
49  -0.78505050
50   1.54776443
51   1.67990756
52   1.60143808
53   1.65121168
54   1.91345441
55   2.12096870
56   1.82564709
57   1.74325810
86  -2.67676857
87  -2.35423701
88  -2.72545831
89  -2.85611202
90  -2.46835353
91  -3.48246665
92  -3.21930370
93  -3.07822981
94  -2.99577803
95  -3.12837027
96  -3.31027311
97  -2.35239282
98  -0.67525532
99  -0.87358197
100 -0.49983888
101 -0.64975465
102 -0.49758349
103  1.60999486
104 -3.83042818
105 -3.62572971
106 -3.33700749
107 -3.10473431
108 -0.32097318
109  1.48072027
110  1.26565121
111  1.40641345
112  2.33228716
113  1.43866914
114  0.04930967
115  1.50902753
116 -2.83323636
117 -2.53375773
118  1.70987536
119  1.55122437
120  1.15863691
121  0.95782768
122 -2.03494818
123  1.18450820
124 -0.24579176
125 -2.14734418
153 -0.89825092
154 -1.05159436
155 -1.21545358
156 -0.90129203
157 -3.33513424
158 -3.24371021
159 -3.29503411
160 -3.47435824
161 -1.54425679
162 -1.55379421
163 -1.32921343
164 -1.49561650
165 -0.54902968
166 -2.09209475
167 -1.90238034
168  1.52780438
169  1.05770527
170 -0.46429505
171  1.08207661
172  1.05952825
173  1.44143140
174  1.23872207
175 -0.58960200
176  1.76344832
177 -0.86386321
178  1.05428279
179  0.71364946
180  0.78689187
181  1.20141357
182  1.82634996
217  1.63139620
218  1.58194112
219  1.81609281
220  1.51507381
221  1.75203505
222 -2.62179417
223 -3.05496745
224 -2.91407795
225 -3.18752026
226 -1.09201774
227 -1.02112532
228 -1.28837968
229 -1.16859307
230 -2.76243326
231 -2.78081364
232 -2.82378826
233 -3.09925755
234  1.81037382
235  0.97634834
236  1.42002633
237  0.96012380
238  1.59499906
239  1.68555201
240  1.69383903
241  1.52373007
242 -0.40703413
243  1.25330270
244  1.77148053
281 -0.75570644
282 -0.65432806
283  0.79943264
284 -0.92577826
285 -0.91976905
286 -2.66448423
287 -2.53987604
288 -2.72849796
289 -2.61767507
290 -3.09294883
291 -2.81839474
292 -2.44158583
293 -2.63642369
294  1.78266262
295  1.68856825
296  1.85129340
297  0.99593632
298 -0.65418485
299 -2.74263046
300  0.35554813
301 -2.43923020
302  1.46862108
303  1.52594983
304  1.63652424
305  1.53670393
306  1.06841567
307 -0.03642437
308 -0.15681475
309  1.19912522
339  1.23220783
340  1.07312457
341  1.13979216
342 -0.21499681
343  1.35259820
344  1.89635306
345  1.79732221
346  1.90332352
347  1.60211303
348  1.68812011
349  1.58620891
350  1.69705377
351  1.41009769
352  1.61368559
353  1.22958296
354  1.50370098
356  1.48756928
357  1.32749691
358  1.17617243
359  1.00019709
360  0.36281697
361 -0.92702493
362 -0.38246687
363 -0.40310889
364 -0.98014188
365 -2.66005059
366 -0.71687769
367 -1.18774787

e:QDA预测

# QDA
qda.fit = qda(mpg01~cylinders+weight+displacement+horsepower,
              data=Auto, subset=train)
qda.pred = predict(qda.fit, Auto.test)
mean(qda.pred$class != mpg01.test)

输出:

[1] 0.1318681

分析:测试错误率为 13.2%、13.2% test error rate.

预测

qda.pred

输出预测结果

$class
  [1] 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
 [35] 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0
 [69] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1
[103] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0
[137] 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
[171] 1 1 1 1 0 0 0 0 0 0 0 0
Levels: 0 1

$posterior
              0            1
30  0.003141092 9.968589e-01
31  0.056171335 9.438287e-01
32  0.006103666 9.938963e-01
34  0.999999765 2.349852e-07
35  0.999937089 6.291146e-05
36  0.999989341 1.065852e-05
37  0.999994439 5.561196e-06
38  0.999932571 6.742860e-05
39  1.000000000 4.597849e-24
40  1.000000000 4.731213e-28
41  1.000000000 2.434787e-23
42  1.000000000 4.183000e-22
43  1.000000000 5.316091e-25
44  1.000000000 8.913898e-26
45  1.000000000 5.587745e-25
46  0.999999979 2.146565e-08
47  0.029185430 9.708146e-01
48  0.999991832 8.168062e-06
49  0.999998050 1.950150e-06
50  0.007101010 9.928990e-01
51  0.007801693 9.921983e-01
52  0.003922023 9.960780e-01
53  0.002240972 9.977590e-01
54  0.001454622 9.985454e-01
55  0.001415413 9.985846e-01
56  0.004134561 9.958654e-01
57  0.001838639 9.981614e-01
86  1.000000000 1.209888e-25
87  1.000000000 1.790860e-22
88  1.000000000 1.742816e-23
89  1.000000000 1.976818e-21
90  1.000000000 1.133940e-22
91  1.000000000 2.730634e-30
92  1.000000000 3.121346e-26
93  1.000000000 4.402256e-23
94  1.000000000 3.363587e-22
95  1.000000000 1.451230e-36
96  1.000000000 3.483441e-38
97  1.000000000 9.817658e-29
98  0.999920434 7.956635e-05
99  0.999992035 7.965200e-06
100 0.999987187 1.281309e-05
101 0.999999392 6.082812e-07
102 0.999647660 3.523397e-04
103 0.012946481 9.870535e-01
104 1.000000000 4.866865e-24
105 1.000000000 6.183913e-25
106 1.000000000 6.926682e-24
107 1.000000000 7.420757e-25
108 0.999997681 2.318836e-06
109 0.004780299 9.952197e-01
110 0.029895878 9.701041e-01
111 0.005948967 9.940510e-01
112 0.037590570 9.624094e-01
113 0.005320933 9.946791e-01
114 0.999878312 1.216880e-04
115 0.004682893 9.953171e-01
116 1.000000000 4.821044e-23
117 1.000000000 7.075589e-39
118 0.006647799 9.933522e-01
119 0.004926801 9.950732e-01
120 0.010969836 9.890302e-01
121 0.138803726 8.611963e-01
122 1.000000000 9.558337e-25
123 0.031977981 9.680220e-01
124 0.999997323 2.677441e-06
125 1.000000000 9.234608e-30
153 0.999906344 9.365611e-05
154 0.999981634 1.836561e-05
155 0.999998898 1.101972e-06
156 0.999999495 5.051863e-07
157 1.000000000 3.429869e-26
158 1.000000000 3.196808e-22
159 1.000000000 6.209005e-23
160 1.000000000 1.727539e-22
161 0.999998645 1.354847e-06
162 0.999994889 5.111083e-06
163 0.999988418 1.158182e-05
164 0.999998415 1.584656e-06
165 0.999979973 2.002731e-05
166 1.000000000 6.484026e-20
167 1.000000000 4.932829e-23
168 0.002669363 9.973306e-01
169 0.012996380 9.870036e-01
170 0.999990433 9.566578e-06
171 0.015692737 9.843073e-01
172 0.011621765 9.883782e-01
173 0.005173678 9.948263e-01
174 0.008846562 9.911534e-01
175 0.999952071 4.792901e-05
176 0.001784978 9.982150e-01
177 0.999952865 4.713531e-05
178 0.025293225 9.747068e-01
179 0.239723948 7.602761e-01
180 0.164092158 8.359078e-01
181 0.056211513 9.437885e-01
182 0.004362813 9.956372e-01
217 0.002439806 9.975602e-01
218 0.003456614 9.965434e-01
219 0.001980983 9.980190e-01
220 0.008572793 9.914272e-01
221 0.001726118 9.982739e-01
222 1.000000000 9.491998e-22
223 1.000000000 8.835569e-24
224 1.000000000 8.567283e-22
225 1.000000000 4.246660e-22
226 0.999979582 2.041844e-05
227 0.999936669 6.333074e-05
228 0.999985848 1.415207e-05
229 0.999983425 1.657542e-05
230 1.000000000 6.180664e-31
231 1.000000000 9.456270e-25
232 1.000000000 4.140062e-31
233 1.000000000 1.452212e-22
234 0.002454168 9.975458e-01
235 0.022538609 9.774614e-01
236 0.004102509 9.958975e-01
237 0.014068151 9.859318e-01
238 0.003106094 9.968939e-01
239 0.002472400 9.975276e-01
240 0.002394298 9.976057e-01
241 0.002785093 9.972149e-01
242 0.999994247 5.752927e-06
243 0.025967101 9.740329e-01
244 0.833456636 1.665434e-01
281 0.999957877 4.212339e-05
282 0.999748165 2.518354e-04
283 0.027650266 9.723497e-01
284 0.999950875 4.912456e-05
285 0.999924718 7.528187e-05
286 1.000000000 6.627081e-21
287 1.000000000 7.103683e-21
288 1.000000000 2.351777e-23
289 1.000000000 1.745734e-21
290 1.000000000 7.634047e-23
291 1.000000000 4.492817e-23
292 1.000000000 6.719297e-21
293 1.000000000 4.012801e-25
294 0.001726392 9.982736e-01
295 0.002100703 9.978993e-01
296 0.003000331 9.969997e-01
297 0.016873672 9.831263e-01
298 0.997122381 2.877619e-03
299 1.000000000 4.593746e-23
300 0.790761916 2.092381e-01
301 1.000000000 4.280388e-20
302 0.003344246 9.966558e-01
303 0.003079015 9.969210e-01
304 0.002530531 9.974695e-01
305 0.003025689 9.969743e-01
306 0.024014889 9.759851e-01
307 0.999930210 6.979030e-05
308 0.999929412 7.058841e-05
309 0.036310870 9.636891e-01
339 0.009558216 9.904418e-01
340 0.029247669 9.707523e-01
341 0.049853045 9.501470e-01
342 0.999872127 1.278727e-04
343 0.012435098 9.875649e-01
344 0.001794496 9.982055e-01
345 0.001803231 9.981968e-01
346 0.001749372 9.982506e-01
347 0.002538754 9.974612e-01
348 0.002122605 9.978774e-01
349 0.003111854 9.968881e-01
350 0.001971181 9.980288e-01
351 0.005340345 9.946597e-01
352 0.002765281 9.972347e-01
353 0.015826666 9.841733e-01
354 0.002875981 9.971240e-01
356 0.003013826 9.969862e-01
357 0.004543917 9.954561e-01
358 0.013761229 9.862388e-01
359 0.019417090 9.805829e-01
360 0.676874483 3.231255e-01
361 0.999999997 3.064300e-09
362 0.999982918 1.708187e-05
363 0.999999878 1.220934e-07
364 0.999939795 6.020489e-05
365 1.000000000 6.847870e-24
366 0.999787966 2.120335e-04
367 0.999979705 2.029473e-05

f:Logistic Regression预测

# Logistic regression
glm.fit = glm(mpg01~cylinders+weight+displacement+horsepower,
              data=Auto,
              family=binomial,
              subset=train)
glm.probs = predict(glm.fit, Auto.test, type="response")
glm.pred = rep(0, length(glm.probs))
glm.pred[glm.probs > 0.5] = 1
mean(glm.pred != mpg01.test)

输出:

[1] 0.1208791

分析:测试错误率为 12.1%、12.1% test error rate.

预测

glm.pred

输出结果

[1] 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
[35] 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 0 0 0
[69] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1
[103] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0
[137] 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
[171] 1 1 1 1 1 0 0 0 0 0 0 0

g:KNN预测(k=1 or 10 or 100)

g.a k=1情况:

library(class)
train.X = cbind(cylinders, weight, displacement, horsepower)[train,]
test.X = cbind(cylinders, weight, displacement, horsepower)[test,]
train.mpg01 = mpg01[train]
#设置随机种子
set.seed(1)
# KNN(k=1)
knn.pred = knn(train.X, test.X, train.mpg01, k=1)
mean(knn.pred != mpg01.test)

输出1:(K=1时)

[1] 0.1538462

分析:k=1时, 15.4% test error rate.

预测

knn.pred

输出结果

  [1] 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0
 [35] 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 0
 [69] 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1
[103] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0
[137] 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[171] 1 1 1 1 1 0 1 0 0 0 0 0
Levels: 0 1

g.b k=10情况:

# KNN(k=10)
knn2.pred = knn(train.X, test.X, train.mpg01, k=10)
mean(knn2.pred != mpg01.test)

输出2:k=10时

[1] 0.1648352

分析:k=10时, 16.5% test error rate.

预测

knn2.pred

输出结果

  [1] 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
 [35] 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 0
 [69] 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
[103] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0
[137] 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[171] 1 1 1 1 0 0 1 1 0 0 0 0
Levels: 0 1

g.c k=100情况:

# KNN(k=100)
knn3.pred = knn(train.X, test.X, train.mpg01, k=100)
mean(knn3.pred != mpg01.test)

输出3:k=100时

[1] 0.1428571

分析:k=100时, 14.3% test error rate.

预测

knn3.pred

输出结果

  [1] 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
 [35] 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 0
 [69] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1
[103] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0
[137] 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[171] 1 1 1 1 0 0 1 1 0 0 0 0
Levels: 0 1

g.d k=9时:

# KNN(k=9)
knn4.pred = knn(train.X, test.X, train.mpg01, k=9)
mean(knn4.pred != mpg01.test)

输出4:k=9时

[1] 0.1593407

分析:k=9时, 15.9% test error rate.

预测

knn4.pred

输出结果

  [1] 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
 [35] 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 0
 [69] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
[103] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0
[137] 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[171] 1 1 1 1 0 0 1 1 0 0 0 0
Levels: 0 1

g.e k=99时:

# KNN(k=99)
knn5.pred = knn(train.X, test.X, train.mpg01, k=99)
mean(knn5.pred != mpg01.test)

输出5:k=99时

[1] 0.1428571

分析:k=99时, 14.28% test error rate.

预测

knn5.pred

输出结果

  [1] 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
 [35] 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 0
 [69] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1
[103] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0
[137] 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[171] 1 1 1 1 0 0 1 1 0 0 0 0
Levels: 0 1

绘制k关于test error rate的图像

#绘制k关于test error rate的图
knn.error = rep(0, 100)
for (i in 1:100) {
  knn.pred = knn(train.X, test.X, train.mpg01, k=i)
  knn.error[i] = mean(knn.pred != mpg01.test)
}
plot(1:100, knn.error, type="l")

输出图像

在这里插入图片描述

预测错误率比较分析:

K of 100 seems to perform the best. 100 nearest neighbors.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2223899.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

计算机网络原理总结C-网络层

网络层 网络层提供的两种服务网际协议IP 虚拟互连网络IP地址子网掩码(无分类编址CIDR)IP地址和MAC地址IP数据报格式(路由)转发分组的流程 因特网的路由选择协议(动态路由协议) 网际控制报文协议ICMPIP多播…

认识CSS语法

CSS(网页美容) 重点:选择器、盒子模型、浮动、定位、动画,伸缩布局 Css的作用: 美化网页:CSS控制标签的样式 网页布局:CSS控制标签的位置 概念:层叠样式表(级联样式表…

UE5 第一人称示例代码阅读0 UEnhancedInputComponent

UEnhancedInputComponent使用流程 我的总结示例分析firstthenand thenfinally&代码关于键盘输入XYZ 我的总结 这个东西是一个对输入进行控制的系统,看了一下第一人称例子里,算是看明白了,但是感觉这东西使用起来有点绕,特此梳…

布隆过滤器:极简存储,高效检索

引言 在海量数据的存储与检索中,如何在保持快速检索的同时,降低内存占用是个巨大的挑战。有没有一种既能快速检索又能节省内存的方案?布隆过滤器(Bloom Filter)就是这样一种数据结构。 布隆过滤器的基本原理 如果我…

数据库、数据仓库、数据湖和数据中台有什么区别

很多企业在面对数据存储和管理时不知道如何选择合适的方式,数据库、数据仓库、数据湖和数据中台,这些方式都是什么?有什么样的区别?企业根据其业务类型该选择哪一种?本文就针对这些问题,来探讨下这些方式都…

【目标检测01】真实框、预测框、锚框和交并比IoU

文章目录 1. 任务定义2. 基本概念2.1 边界框(bounding box)2.2 真实框、预测框和锚框2.3 交并比 (IoU)2.4 代码实现 1. 任务定义 目标检测的主要目的是让计算机可以自动识别图片或者视频帧中所有目标的类别,并在该目标周围绘制边界框&#x…

【linux网络编程】| 网络基础 | 解析IP与Mac地址的区别

前言:本节内容讲解一些网络基础相关的知识点, 不涉及网络代码!同样的本节内容是作为前一篇的补充知识点, 前一篇文章地址:【linux网络编程】 | 网络基础Ⅰ| 认识网络-CSDN博客,本篇文章内容较少&#xff0c…

命名空间std, using namespace std

命名空间std&#xff0c;using namespace std 在标准C以前&#xff0c;都是用#include<iostream.h>这样的写法的&#xff0c;因为要包含进来的头文件名就是iostream.h。标准C引入了名字空间的概念&#xff0c;并把iostream等标准库中的东东封装到了std名字空间中&#x…

UE5 源码学习 初始化

跟着 https://www.cnblogs.com/timlly/p/13877623.html 学习 入口函数 UnrealEngine\Engine\Source\Runtime\Launch\Private\Windows\LaunchWindows.cpp WinMain 入口 int32 WINAPI WinMain(_In_ HINSTANCE hInInstance, _In_opt_ HINSTANCE hPrevInstance, _In_ char* p…

unity开发之可视化制作动画

录制动画 1&#xff09;打开录制动画页面&#xff08;或者按快捷键ctrl6&#xff09; 2&#xff09;选中需要录制动画的对象 3&#xff09;创建动画列表&#xff0c;注意现在还没有录制动画&#xff0c;我这里创建了开门和关门动画列表 4&#xff09;选择需要录制动画的对象的相…

【计网】UDP Echo Server与Client实战:从零开始构建简单通信回显程序

目录 前言&#xff1a; 1.实现udpserver类 1.1.创建udp socket 套接字 --- 必须要做的 socket&#xff08;&#xff09;讲解 代码实现&#xff1a;​编辑 代码讲解&#xff1a; 1.2.填充sockaddr_in结构 代码实现&#xff1a; 代码解析&#xff1a; 1.3.bind sockfd和…

关于在vue2中接受后端返回的二进制流并进行本地下载

后端接口返回&#xff1a; 前端需要在两个地方写代码&#xff1a; 1.封装接口处&#xff0c;responseType: blob 2.接收相应处 download() {if (this.selectionList.length 0) {this.$message.error("请选择要导出的数据&#xff01;");} else {examineruleExport…

【Git】将本地代码提交到github仓库

一、创建仓库 复制这里的HTTP连接码 二、仓库初始化 进入你要提交的代码文件夹 右键选择 Git Bach Here 输入命令 git clone [HTTP连接码] 此时文件夹里会出现一个新的文件夹&#xff0c;将原来的文件当今这个新的文件夹 三、上传代码 执行命令 cd [新文件夹] 将所有文件放…

ArcGIS必会的选择要素方法(AND、OR、R、IN等)位置选择等

今天来看看ArcGIS中的几个选择的重要使用方法 1、常规选择、 2、模糊查询、 3、组合复合条件查询&#xff08;AND、OR、IN&#xff09;&#xff0c; 4、空值NULL查询 5、位置选择 推荐学习&#xff1a; 以梦为马&#xff0c;超过万名学员学习ArcGIS入门到实战的应用课程…

Pandas模块之垂直或水平交错条形图

目录 df.plot() 函数Pandas模块之垂直条形图Pandas模块之水平交错条形图 df.plot() 函数 df.plot() 是 Pandas 中的一个函数&#xff0c;用于绘制数据框中的数据。它是基于 Matplotlib 库构建的&#xff0c;可以轻松地创建各种类型的图表&#xff0c;包括折线图、柱状图、散点…

权重衰减学习

1.权重衰减是最广泛使用的正则化技术之一 %matplotlib inline import torch from torch import nn from d2l import torch as d2l 2.生成数据 n_train, n_test, num_inputs, batch_size 20, 100, 200, 5 true_w, true_b torch.ones((num_inputs, 1)) * 0.01, 0.05 train_dat…

论文笔记:LaDe: The First Comprehensive Last-mile Delivery Dataset from Industry

2023 KDD 1 intro 1.1 背景 随着城市化进程的加快和电子商务的发展&#xff0c;最后一公里配送已成为一个关键的研究领域 最后一公里配送&#xff0c;如图1所示&#xff0c;是指连接配送中心和客户的包裹运输过程&#xff0c;包括包裹的取件和配送除了对客户满意度至关重要外…

《等保测评新视角:安全与发展的双赢之道》

在数字化转型的浪潮中&#xff0c;企业面临的不仅是技术革新的挑战&#xff0c;更有信息安全的严峻考验。等保测评&#xff0c;作为国家网络安全等级保护的一项重要措施&#xff0c;不仅为企业的安全护航&#xff0c;更成为推动企业高质量发展的新引擎。本文将从全新的视角&…

如何用 Spring AI + Ollama 构建生成式 AI 应用

为了构建生成式AI应用&#xff0c;需要完成两个部分&#xff1a; • AI大模型服务&#xff1a;有两种方式实现&#xff0c;可以使用大厂的API&#xff0c;也可以自己部署&#xff0c;本文将采用ollama来构建• 应用构建&#xff1a;调用AI大模型的能力实现业务逻辑&#xff0c;…

mfc之tab标签控件的使用--附TabSheet源码

TabSheet源码 TabSheet.h #if !defined(AFX_TABSHEET_H__42EE262D_D15F_46D5_8F26_28FD049E99F4__INCLUDED_) #define AFX_TABSHEET_H__42EE262D_D15F_46D5_8F26_28FD049E99F4__INCLUDED_#if _MSC_VER > 1000 #pragma once #endif // _MSC_VER > 1000 // TabSheet.h : …